
Brigitte Reniers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997685/publications.pdf Version: 2024-02-01

RDICITTE PENIEDS

#	Article	IF	CITATIONS
1	A deep learning and Monte Carlo based framework for bioluminescence imaging center of mass-guided glioblastoma targeting. Physics in Medicine and Biology, 2022, 67, 144003.	3.0	7
2	Validation of TOPAS MC for modelling the efficiency of an extended-range coaxial p-type HPGe detector. Applied Radiation and Isotopes, 2021, 173, 109699.	1.5	4
3	The effect of different lower detection thresholds in microdosimetric spectra and their mean values. Radiation Measurements, 2021, 146, 106626.	1.4	7
4	Advanced design, simulation, and dosimetry of a novel rectal applicator for contact brachytherapy with a conventional HDR 192Ir source. Brachytherapy, 2020, 19, 544-553.	0.5	4
5	The effect of gamma radiation on the mechanical and microstructural properties of Fe-rich inorganic polymers. Journal of Nuclear Materials, 2019, 521, 126-136.	2.7	11
6	Mechanical evaluation of the Bravos afterloader system for HDR brachytherapy. Brachytherapy, 2019, 18, 852-862.	0.5	9
7	A novel rectal applicator for contact radiotherapy with HDR 192Ir sources. Brachytherapy, 2018, 17, 1037-1044.	0.5	7
8	Online pretreatment verification of high-dose rate brachytherapy using an imaging panel. Physics in Medicine and Biology, 2017, 62, 5440-5461.	3.0	31
9	Theoretical versusEx VivoAssessment of Radiation Damage Repair: An Investigation in Normal Breast Tissue. Radiation Research, 2016, 185, 393-401.	1.5	1
10	Dose distribution for gynecological brachytherapy with dose accumulation between insertions: Feasibility study. Brachytherapy, 2016, 15, 504-513.	0.5	7
11	A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study. Physics in Medicine and Biology, 2016, 61, 383-399.	3.0	20
12	MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy. Medical Physics, 2016, 43, 3691-3691.	3.0	4
13	HDR ¹⁹² Ir source speed measurements using a high speed video camera. Medical Physics, 2015, 42, 412-415.	3.0	17
14	Dose specification for ¹⁹² Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium. Physics in Medicine and Biology, 2015, 60, 4565-4579.	3.0	14
15	Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film. Physics in Medicine and Biology, 2015, 60, 3869-3882.	3.0	3
16	What Level of Accuracy Is Achievable for Preclinical Dose Painting Studies on a Clinical Irradiation Platform?. Radiation Research, 2015, 183, 501.	1.5	7
17	High dose rate and flattening filter free irradiation can be safely implemented in clinical practice. International Journal of Radiation Biology, 2015, 91, 778-785.	1.8	12
18	Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clinical Cancer Research, 2015, 21, 5511-5518.	7.0	23

#	Article	IF	CITATIONS
19	Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source. Medical Physics, 2014, 41, 061701.	3.0	29
20	The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions. Physics in Medicine and Biology, 2014, 59, 5921-5935.	3.0	7
21	Monte Carlo Simulation of HDR Ir-192 Brachytherapy Cancer Treatments. Brachytherapy, 2014, 13, S28.	0.5	Ο
22	The contribution from transit dose for192Ir HDR brachytherapy treatments. Physics in Medicine and Biology, 2014, 59, 1831-1844.	3.0	19
23	A medical image-based graphical platform—Features, applications and relevance for brachytherapy. Brachytherapy, 2014, 13, 632-639.	0.5	16
24	Dose perturbation due to catheter materials in high-dose-rate interstitial 1921r brachytherapy. Brachytherapy, 2014, 13, 627-631.	0.5	10
25	Multicentre treatment planning study of MRI-guided brachytherapy for cervical cancer: Comparison between tandem-ovoid applicator users. Radiotherapy and Oncology, 2013, 107, 82-87.	0.6	20
26	Dosimetric Impact of Tissue Heterogeneity in Low Energy Accelerated Partial Breast Irradiation: A Monte Carlo Study. Brachytherapy, 2013, 12, S46.	0.5	0
27	3D Dose Distribution for GYN with Dose Accumulation between Insertions: Feasibility Study. Brachytherapy, 2013, 12, S22.	0.5	2
28	SU-E-U-10: Ultrasound Based Deformable Image Registration: Daily CT Images Derived From Daily IGRT Ultrasound. Medical Physics, 2013, 40, 375-375.	3.0	0
29	Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers. Medical Physics, 2012, 39, 1410-1417.	3.0	7
30	Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry. Physics in Medicine and Biology, 2012, 57, 3585-3596.	3.0	19
31	<i>In vivo</i> dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: Feasibility study. Medical Physics, 2012, 39, 1925-1935.	3.0	24
32	ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy. Physics in Medicine and Biology, 2012, 57, 3273-3280.	3.0	58
33	Consequences of dose heterogeneity on the biological efficiency of103Pd permanent breast seed implants. Physics in Medicine and Biology, 2012, 57, 809-823.	3.0	7
34	Prognostic value of chromosomal imbalancies and the colon gene expression signatures in rectal cancer Journal of Clinical Oncology, 2012, 30, 465-465.	1.6	0
35	Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations. Physics in Medicine and Biology, 2011, 56, 6257-6278.	3.0	57
36	Tissue modeling schemes in low energy breast brachytherapy. Physics in Medicine and Biology, 2011, 56, 7045-7060.	3.0	13

#	Article	IF	CITATIONS
37	81 oral BREAST TISSUE MODELING IN MONTE CARLO POST-IMPLANT EVALUATION OF BREAST LDR BRACHYTHERAPY. Radiotherapy and Oncology, 2011, 99, S30-S31.	0.6	Ο
38	108 oral DOSE TO MEDIUM AND WATER IN LOW ENERGY BRACHYTHERAPY. Radiotherapy and Oncology, 2011, 99, S41.	0.6	0
39	147 oral MULTICENTRE STUDY OF MRI-GUIDED BRACHYTHERAPY TREATMENT PLANNING: COMPARISON AMONG TANDEM OVOID APPLICATOR USERS. Radiotherapy and Oncology, 2011, 99, S55.	0.6	0
40	155 oral ON THE POTENTIAL OF DUAL ENERGY CT TISSUE SEGMENTATION IN LOW ENERGY BRACHYTHERAPY DOSE CALCULATIONS. Radiotherapy and Oncology, 2011, 99, S58-S59.	0.6	0
41	300 oral IN VIVO DOSIMETRY FOR GYNAECOLOGICAL BRACHYTHERAPY BASED ON A NOVEL RADPOS SYSTEM Radiotherapy and Oncology, 2011, 99, S118-S119.	0.6	1
42	Residual metabolic tumor activity after chemo-radiotherapy is mainly located in initially high FDG uptake areas in rectal cancer. Radiotherapy and Oncology, 2011, 99, 137-141.	0.6	30
43	Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: Experiments and a simulation model. Radiotherapy and Oncology, 2011, 100, 375-379.	0.6	82
44	Technical Note: Cone beam CT imaging for 3D image guided brachytherapy for gynecological HDR brachytherapy. Medical Physics, 2011, 38, 2762-2767.	3.0	4
45	Different Tissue Modeling Schemes in Post-implant Assessment ofÂBreast LDR Brachytherapy. Brachytherapy, 2011, 10, S32.	0.5	1
46	The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources. Medical Physics, 2011, 38, 1526-1533.	3.0	39
47	TH-A-220-05: Evaluating the Impact of Dual Energy CT on LDR Brachytherapy Dose Calculations. Medical Physics, 2011, 38, 3846-3846.	3.0	0
48	SU-E-T-374: Use of the Novel RadPos System for In-Vivo Dose Verification in Gynaecological Brachytherapy Treatment. Medical Physics, 2011, 38, 3573-3573.	3.0	0
49	Cone Beam CT-Based Three-Dimensional Planning in High-Dose-Rate Brachytherapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 77, 1092-1097.	0.8	12
50	Breast Density Effect on Target and Skin Doses in 40 Breast 103pd Seed Implants Studied using a Semiautomatic Tissue Segmentation. International Journal of Radiation Oncology Biology Physics, 2010, 78, S252-S253.	0.8	0
51	Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition. Medical Physics, 2010, 37, 5188-5198.	3.0	77
52	Influence of breast composition and interseed attenuation in dose calculations for post-implant assessment of permanent breast ¹⁰³ Pd seed implant. Physics in Medicine and Biology, 2010, 55, 4547-4561.	3.0	36
53	SU-GG-T-496: The Sensitivity of BED and TCP Parameters to Dose Heterogeneity in Brachytherapy Treatments. Medical Physics, 2010, 37, 3301-3301.	3.0	0
54	Clinical implementation of a digital tomosynthesisâ€based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy. Medical Physics, 2009, 36, 5235-5244.	3.0	19

#	Article	IF	CITATIONS
55	Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant. Medical Physics, 2009, 36, 1848-1858.	3.0	31
56	3D DOSE DISTRIBUTION FOR GYN WITH DOSE ACCUMULATION BETWEEN INSERTIONS: FEASIBILITY STUDY. Radiotherapy and Oncology, 2009, 92, S102.	0.6	0
57	USE OF ADVANCED DEFORMABLE REGISTRATION ALGORITHMS IN REPEATED FDG PET-CT IMAGING FOR RECTAL CANCER. Radiotherapy and Oncology, 2009, 92, S120.	0.6	Ο
58	84 poster: 3D Image Guided Brachytherapy Using Cone Beam CT. Radiotherapy and Oncology, 2009, 91, S33.	0.6	0
59	42 oral: The Role of Monte Carlo Simulation in Brachytherapy With Low-Energy Sources. Radiotherapy and Oncology, 2009, 91, S14-S15.	0.6	0
60	SU-FF-T-406: Toward a More Accurate Dose Calculation Technique Using a Semiautomatic Organ Contouring in Monte Carlo Post-Implant Assessment of Breast LDR Brachytherapy. Medical Physics, 2009, 36, 2615-2615.	3.0	2
61	SU-FF-I-15: An Algorithm for Metal Streaking Artifact Reduction in Cone Beam CT. Medical Physics, 2009, 36, 2437-2737.	3.0	0
62	WE-D-BRB-08: Effects of Shielded Ovoids in HDR 192Ir Cervical Brachytherapy: A Monte Carlo Study Using Cone-Beam CT Images. Medical Physics, 2009, 36, 2773-2773.	3.0	0
63	3D image-guided brachytherapy using cone beam CT. Brachytherapy, 2008, 7, 155-156.	0.5	1
64	The use of Cone Beam CT-based Three-dimensional Planning in Intracavitary Brachytherapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, S583.	0.8	2
65	Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Physics in Medicine and Biology, 2008, 53, 7125-7135.	3.0	44
66	Spectroscopic characterization of a novel electronic brachytherapy system. Physics in Medicine and Biology, 2008, 53, 61-75.	3.0	252
67	Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator. Medical Physics, 2008, 35, 4824-4830.	3.0	10
68	Monte Carlo iodine brachytherapy dosimetry: study for a clinical application. Journal of Physics: Conference Series, 2008, 102, 012011.	0.4	2
69	SU-GG-T-05: MOSFET In-Vivo Dosimetry for Colorectal Cancer Patients Treated with Shielded Brachytherapy. Medical Physics, 2008, 35, 2727-2727.	3.0	0
70	SU-GG-T-508: Evaluation of the Monte Carlo Dose Calculation Engine of Eclipse Treatment Planning System for Electron Beams. Medical Physics, 2008, 35, 2841-2842.	3.0	0
71	SUâ€HHâ€AUD Câ€05: Low Dose Rate Prostate Brachytherapy: A Tomosynthesisâ€Based Intraâ€Operative Postâ€Implant Dose Evaluation. Medical Physics, 2008, 35, 2854-2854.	3.0	0
72	SU-GG-T-29: Introduction of the Cone Beam CT for 3D Image Guided GYN Brachytherapy. Medical Physics, 2008, 35, 2732-2732.	3.0	0

#	Article	IF	CITATIONS
73	THâ€Câ€AUD Aâ€10: LDR Brachytherapy Dosimetry: Monte Carlo Code and TGâ€43 Comparisons. Medical Phys 2008, 35, 2971-2971.	ics _{3.0}	0
74	Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1190-1198.	0.8	69
75	The microdosimetry of low-energy photons in radiotherapy. Radiation Protection Dosimetry, 2006, 122, 401-403.	0.8	13
76	Dosimetric characterization of a novel intracavitary mold applicator for Ir192 high dose rate endorectal brachytherapy treatment. Medical Physics, 2006, 33, 4515-4526.	3.0	38
77	SU-FF-T-316: Measured and Calculated Dose Distribution Around 125I Brachytherapy Seeds in a Breast Phantom. Medical Physics, 2006, 33, 2119-2119.	3.0	0
78	Relative biologic effectiveness in terms of tumor response of 1251 implants compared with 60Co gamma rays. International Journal of Radiation Oncology Biology Physics, 2005, 63, 224-229.	0.8	14
79	Optimization of a breast implant in Brachytherapy PDR. Validation with Monte Carlo simulation and measurements with TLDs and GafChromic films. Radiotherapy and Oncology, 2005, 76, 326-333.	0.6	7
80	Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt x-rays. Physics in Medicine and Biology, 2005, 50, 3555-3569.	3.0	62
81	MO-E-T-618-05: Monte Carlo Study of the Effect of the Tissue Composition On the Dosimetric Data Used for Low Energy Photons. Medical Physics, 2005, 32, 2069-2069.	3.0	1
82	SU-FF-T-364: Photo-Electric Effect with a Vengeance: Dosimetric and Microdosimetric Characterization of Contrast-Enhanced Radiation Therapy Using Kilovolt X-Rays. Medical Physics, 2005, 32, 2034-2034.	3.0	0
83	Microdosimetric Analysis of Various Mammography Spectra: Lineal Energy Distributions and Ionization Cluster Analysis. Radiation Research, 2004, 162, 592-599.	1.5	23
84	The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements. Physics in Medicine and Biology, 2004, 49, 1569-1582.	3.0	67
85	Theoretical analysis of microdosimetric spectra and cluster formation for103Pd and125I photon emitters. Physics in Medicine and Biology, 2004, 49, 3781-3795.	3.0	16
86	Design of a Cylindrical Brachytherapy Implant Applicator for the Irradiation of an Intestinal Segment in Mice. Radiation Research, 2003, 159, 123-127.	1.5	0
87	Dosimetric study of a new palladium seed. Applied Radiation and Isotopes, 2002, 57, 805-811.	1.5	20
88	Dosimetric study of the new InterSource125iodine seed. Medical Physics, 2001, 28, 2285-2288.	3.0	27