Martin F Jarrold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/997559/publications.pdf

Version: 2024-02-01

232 papers

15,828 citations

62 h-index 26792 111 g-index

235 all docs

235
docs citations

times ranked

235

7829 citing authors

#	Article	IF	CITATIONS
1	Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology. Chemical Reviews, 2022, 122, 7415-7441.	23.0	45
2	Core Protein-Directed Antivirals and Importin \hat{l}^2 Can Synergistically Disrupt Hepatitis B Virus Capsids. Journal of Virology, 2022, 96, JVI0139521.	1.5	12
3	Analysis of Recombinant Adenovirus Vectors by Ion Trap Charge Detection Mass Spectrometry: Accurate Molecular Weight Measurements beyond 150 MDa. Analytical Chemistry, 2022, 94, 1543-1551.	3.2	9
4	Calcium Contributes to Polarized Targeting of HIV Assembly Machinery by Regulating Complex Stability. Jacs Au, 2022, 2, 522-530.	3.6	0
5	Hysteresis in Hepatitis B Virus (HBV) Requires Assembly of Near-Perfect Capsids. Biochemistry, 2022, 61, 505-513.	1.2	4
6	Analysis of Keratinocytic Exosomes from Diabetic and Nondiabetic Mice by Charge Detection Mass Spectrometry. Analytical Chemistry, 2022, 94, 8909-8918.	3.2	4
7	Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22. Viruses, 2022, 14, 1400.	1.5	2
8	Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nature Communications, 2021, 12, 589.	5.8	12
9	Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 3959-3966.	6.6	45
10	Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Analytical Chemistry, 2021, 93, 8484-8492.	3.2	8
11	HBV Core-Directed Antivirals and Importin \hat{l}^2 Can Synergistically Disrupt Capsids. Microscopy and Microanalysis, 2021, 27, 1130-1131.	0.2	2
12	Characterization of Classical Vaccines by Charge Detection Mass Spectrometry. Analytical Chemistry, 2021, 93, 11965-11972.	3.2	13
13	Comparison of analytical techniques to quantitate the capsid content of adeno-associated viral vectors. Molecular Therapy - Methods and Clinical Development, 2021, 23, 254-262.	1.8	51
14	Quantitative analysis of genome packaging in recombinant AAV vectors by charge detection mass spectrometry. Molecular Therapy - Methods and Clinical Development, 2021, 23, 87-97.	1.8	35
15	N-terminal VP1 Truncations Favor T = 1 Norovirus-Like Particles. Vaccines, 2021, 9, 8.	2.1	15
16	Characterization of Recombinant Chimpanzee Adenovirus C68 Low and High-Density Particles: Impact on Determination of Viral Particle Titer. Frontiers in Bioengineering and Biotechnology, 2021, 9, 753480.	2.0	5
17	Determination of Antibody Population Distributions for Virus-Antibody Conjugates by Charge Detection Mass Spectrometry. Analytical Chemistry, 2020, 92, 1285-1291.	3.2	6
18	Virus Assembly Pathways: Straying Away but Not Too Far. Small, 2020, 16, 2004475.	5.2	18

#	Article	lF	CITATIONS
19	Higher Resolution Charge Detection Mass Spectrometry. Analytical Chemistry, 2020, 92, 11357-11364.	3.2	47
20	Dynamic Calibration Enables High-Accuracy Charge Measurements on Individual Ions for Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1241-1248.	1.2	25
21	Disassembly Intermediates of the Brome Mosaic Virus Identified by Charge Detection Mass Spectrometry. Journal of Physical Chemistry B, 2020, 124, 2124-2131.	1.2	18
22	Charge Detection Mass Spectrometry Measurements of Exosomes and other Extracellular Particles Enriched from Bovine Milk. Analytical Chemistry, 2020, 92, 3285-3292.	3.2	32
23	Implementation of a Charge-Sensitive Amplifier without a Feedback Resistor for Charge Detection Mass Spectrometry Reduces Noise and Enables Detection of Individual Ions Carrying a Single Charge. Journal of the American Society for Mass Spectrometry, 2020, 31, 146-154.	1.2	27
24	Virus-like particle size and molecular weight/mass determination applying gas-phase electrophoresis (native nES GEMMA). Analytical and Bioanalytical Chemistry, 2019, 411, 5951-5962.	1.9	28
25	Dramatic Improvement in Sensitivity with Pulsed Mode Charge Detection Mass Spectrometry. Analytical Chemistry, 2019, 91, 14002-14008.	3.2	14
26	Ion-Ion Interactions in Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2741-2749.	1.2	9
27	Real-Time Analysis and Signal Optimization for Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 898-904.	1.2	36
28	Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infectious Diseases, 2019, 5, 892-902.	1.8	21
29	Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Human Gene Therapy Methods, 2019, 30, 214-225.	2.1	18
30	Multiple Pathways in Capsid Assembly. Journal of the American Chemical Society, 2018, 140, 5784-5790.	6.6	49
31	Integrative structure and functional anatomy of a nuclear pore complex. Nature, 2018, 555, 475-482.	13.7	435
32	Probing Antibody Binding to Canine Parvovirus with Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 2018, 140, 15701-15711.	6.6	24
33	Resolution of Lipoprotein Subclasses by Charge Detection Mass Spectrometry. Analytical Chemistry, 2018, 90, 6353-6356.	3.2	24
34	Optimized Electrostatic Linear Ion Trap for Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 2086-2095.	1.2	41
35	The FUNPET—a New Hybrid Ion Funnel-Ion Carpet Atmospheric Pressure Interface for the Simultaneous Transmission of a Broad Mass Range. Journal of the American Society for Mass Spectrometry, 2018, 29, 2160-2172.	1.2	38
36	Spontaneous Mass and Charge Losses from Single Multi-Megadalton lons Studied by Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 498-506.	1.2	19

#	Article	IF	CITATIONS
37	Melting of Size-Selected Aluminum Clusters with 150–342 Atoms: The Transition to Thermodynamic Scaling. Journal of Physical Chemistry C, 2017, 121, 10242-10248.	1.5	7
38	Charge detection mass spectrometry: weighing heavier things. Analyst, The, 2017, 142, 1654-1671.	1.7	89
39	A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid. Protein Science, 2017, 26, 2170-2180.	3.1	22
40	Hepatitis B Virus Capsid Completion Occurs through Error Correction. Journal of the American Chemical Society, 2017, 139, 16932-16938.	6.6	71
41	Singleâ€molecule mass spectrometry. Mass Spectrometry Reviews, 2017, 36, 715-733.	2.8	69
42	A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. Science Advances, 2017, 3, e1700423.	4.7	36
43	Measurement of the accurate mass of a 50ÂMDa infectious virus. Rapid Communications in Mass Spectrometry, 2016, 30, 1957-1962.	0.7	46
44	Virus Matryoshka: A Bacteriophage Particleâ€"Guided Molecular Assembly Approach to a Monodisperse Model of the Immature Human Immunodeficiency Virus. Small, 2016, 12, 5862-5872.	5.2	8
45	Catching a virus in a molecular net. Nanoscale, 2016, 8, 16221-16228.	2.8	28
46	Resolving Adeno-Associated Viral Particle Diversity With Charge Detection Mass Spectrometry. Analytical Chemistry, 2016, 88, 6718-6725.	3.2	116
47	Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 1028-1036.	1.2	42
48	Charge Detection Mass Spectrometry Identifies Preferred Non-Icosahedral Polymorphs in the Self-Assembly of Woodchuck Hepatitis Virus Capsids. Journal of Molecular Biology, 2016, 428, 292-300.	2.0	43
49	Importin \hat{I}^2 Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathogens, 2016, 12, e1005802.	2.1	39
50	Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy. Analytical Chemistry, 2015, 87, 10330-10337.	3.2	84
51	Charge Detection Mass Spectrometry for Single lons with an Uncertainty in the Charge Measurement of 0.65Âe. Journal of the American Society for Mass Spectrometry, 2015, 26, 1213-1220.	1.2	46
52	A frequency and amplitude scanned quadrupole mass filter for the analysis of high <i>m</i> / <i>z</i> ions. Review of Scientific Instruments, 2014, 85, 113109.	0.6	9
53	Reactions of liquid and solid aluminum clusters with N2: The role of structure and phase in Al114+, Al115+, and Al117+. Journal of Chemical Physics, 2014, 141, 204304.	1.2	8
54	Charge detection mass spectrometry of bacteriophage P22 procapsid distributions above 20 MDa. Rapid Communications in Mass Spectrometry, 2014, 28, 483-488.	0.7	44

#	Article	IF	CITATIONS
55	Structurally Similar Woodchuck and Human Hepadnavirus Core Proteins Have Distinctly Different Temperature Dependences of Assembly. Journal of Virology, 2014, 88, 14105-14115.	1.5	27
56	Melting of Size-Selected Gallium Clusters with 60–183 Atoms. Journal of Physical Chemistry A, 2014, 118, 4900-4906.	1.1	29
57	Detection of Late Intermediates in Virus Capsid Assembly by Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 2014, 136, 3536-3541.	6.6	118
58	A simple electrospray interface based on a DC ion carpet. International Journal of Mass Spectrometry, 2014, 371, 1-7.	0.7	17
59	Charge detection mass spectrometry for single ions with a limit of detection of 30 charges. International Journal of Mass Spectrometry, 2013, 345-347, 153-159.	0.7	95
60	Charge Detection Mass Spectrometry with Resolved Charge States. Journal of the American Society for Mass Spectrometry, 2013, 24, 101-108.	1.2	85
61	Probing higher order multimers of pyruvate kinase with charge detection mass spectrometry. International Journal of Mass Spectrometry, 2013, 337, 50-56.	0.7	41
62	Reactions of CO ₂ on Solid and Liquid Al ₁₀₀ ⁺ . Journal of Physical Chemistry A, 2013, 117, 1053-1058.	1.1	7
63	Dehydrogenation of Benzene on Liquid Al ₁₀₀ ⁺ . Journal of Physical Chemistry A, 2013, 117, 2075-2081.	1.1	3
64	Discovering Free Energy Basins for Macromolecular Systems via Guided Multiscale Simulation. Journal of Physical Chemistry B, 2012, 116, 8534-8544.	1.2	7
65	Charge Separation from the Bursting of Bubbles on Water. Journal of Physical Chemistry A, 2011, 115, 5723-5728.	1.1	30
66	Melting and Freezing of Metal Clusters. Annual Review of Physical Chemistry, 2011, 62, 151-172.	4.8	105
67	Image Charge Detection Mass Spectrometry: Pushing the Envelope with Sensitivity and Accuracy. Analytical Chemistry, 2011, 83, 950-956.	3.2	37
68	Activation of Dinitrogen by Solid and Liquid Aluminum Nanoclusters: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2010, 132, 12906-12918.	6.6	43
69	Melting of size-selected aluminum nanoclusters with 84–128 atoms. Journal of Chemical Physics, 2010, 132, 034302.	1.2	36
70	Metal clusters with hidden ground states: Melting and structural transitions in Al115+, Al116+, and Al117+. Journal of Chemical Physics, 2009, 131, 124305.	1.2	16
71	Electronic effects on melting: Comparison of aluminum cluster anions and cations. Journal of Chemical Physics, 2009, 131, 044307.	1.2	47
72	Freezing, fragmentation, and charge separation in sonic sprayed water droplets. International Journal of Mass Spectrometry, 2009, 283, 191-199.	0.7	19

#	Article	IF	Citations
73	Melting Dramatically Enhances the Reactivity of Aluminum Nanoclusters. Journal of the American Chemical Society, 2009, 131, 2446-2447.	6.6	52
74	One Ring to Bind Them All: Shape-Selective Complexation of Phenylenediamine Isomers with Cucurbit[6]uril in the Gas Phase. Journal of Physical Chemistry A, 2009, 113, 989-997.	1.1	50
75	Phase coexistence in melting aluminum clusters. Journal of Chemical Physics, 2009, 130, 204303.	1.2	20
76	Evidence for High T C Superconducting Transitions in Isolated Al 45 \hat{a} ° and Al 47 \hat{a} ° Nanoclusters. Journal of Superconductivity and Novel Magnetism, 2008, 21, 163-166.	0.8	31
77	Charge Separation in the Aerodynamic Breakup of Micrometer-Sized Water Droplets. Journal of Physical Chemistry A, 2008, 112, 13352-13363.	1.1	117
78	Substituting a copper atom modifies the melting of aluminum clusters. Journal of Chemical Physics, 2008, 129, 124709.	1.2	21
79	Correlation between the latent heats and cohesive energies of metal clusters. Journal of Chemical Physics, 2008, 129, 144702.	1.2	53
80	Metal clusters that freeze into high energy geometries. Journal of Chemical Physics, 2008, 129, 014503.	1.2	17
81	Improved signal stability from a laser vaporization source with a liquid metal target. Review of Scientific Instruments, 2007, 78, 075108.	0.6	22
82	Melting transitions in aluminum clusters: The role of partially melted intermediates. Physical Review B, 2007, 76, .	1.1	55
83	Melting of Alloy Clusters:  Effects of Aluminum Doping on Gallium Cluster Melting. Journal of Physical Chemistry A, 2007, 111, 8056-8061.	1.1	16
84	Helices and Sheets in vacuo. Physical Chemistry Chemical Physics, 2007, 9, 1659.	1.3	125
85	Melting of Aluminum Cluster Cations with 31â^'48 Atoms:  Experiment and Theory. Journal of Physical Chemistry C, 2007, 111, 17788-17794.	1.5	30
86	lon calorimetry: Using mass spectrometry to measure melting points. Journal of the American Society for Mass Spectrometry, 2007, 18, 74-81.	1.2	43
87	Folding and unfolding of helix-turn-helix motifs in the gas phase. Journal of the American Society for Mass Spectrometry, 2007, 18, 1239-1248.	1.2	29
88	Pulsed Acceleration Charge Detection Mass Spectrometry:  Application to Weighing Electrosprayed Droplets. Analytical Chemistry, 2007, 79, 8431-8439.	3.2	43
89	An IMSâ^'IMS Analogue of MSâ^'MS. Analytical Chemistry, 2006, 78, 4161-4174.	3.2	251
90	Proton Transfer-Induced Conformational Changes and Melting In Designed Peptides in the Gas Phase. Journal of the American Chemical Society, 2006, 128, 7193-7197.	6.6	28

#	Article	IF	Citations
91	Negative Droplets from Positive Electrospray. Journal of Physical Chemistry A, 2006, 110, 12607-12612.	1.1	36
92	Ion funnels for the masses: Experiments and simulations with a simplified ion funnel. Journal of the American Society for Mass Spectrometry, 2005, 16, 1708-1712.	1.2	57
93	Melting, Premelting, and Structural Transitions in Size-Selected Aluminum Clusters with around 55 Atoms. Physical Review Letters, 2005, 94, 173401.	2.9	160
94	Tin clusters that do not melt: Calorimetry measurements up to 650K. Physical Review B, 2005, 71, .	1,1	42
95	Left-Handed and Ambidextrous Helices in the Gas Phase. Journal of Physical Chemistry B, 2005, 109, 11777-11780.	1.2	15
96	Stable Copperâ^'Tin Cluster Compositions from High-Temperature Annealing. Journal of Physical Chemistry A, 2005, 109, 8755-8759.	1.1	24
97	Second-Order Phase Transitions in Amorphous Gallium Clusters. Journal of Physical Chemistry B, 2005, 109, 16575-16578.	1.2	44
98	Entropic Stabilization of Isolated \hat{l}^2 -Sheets. Journal of the American Chemical Society, 2005, 127, 4675-4679.	6.6	39
99	Non-Covalent Interactions between Unsolvated Peptides:  Helical Complexes Based on Acidâ^'Base Interactions. Journal of Physical Chemistry B, 2005, 109, 6442-6447.	1.2	13
100	Melting, freezing, sublimation, and phase coexistence in sodium chloride nanocrystals. Journal of Chemical Physics, 2004, 121, 6502-6507.	1,2	31
101	Application of evolutionary algorithm methods to polypeptide folding: Comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7215-7222.	3.3	22
102	All-atom generalized-ensemble simulations of small proteins. Journal of Molecular Graphics and Modelling, 2004, 22, 397-403.	1.3	35
103	Extreme Stability of an Unsolvated α-Helix. Journal of the American Chemical Society, 2004, 126, 7420-7421.	6.6	71
104	Ï€-Helix Preference in Unsolvated Peptides. Journal of the American Chemical Society, 2004, 126, 2777-2784.	6.6	20
105	Gas-Phase Zwitterions in the Absence of a Net Charge. Journal of Physical Chemistry A, 2004, 108, 10861-10864.	1.1	46
106	Water Molecule Adsorption on Short Alanine Peptides:Â How Short Is the Shortest Gas-Phase Alanine-Based Helix?. Journal of the American Chemical Society, 2004, 126, 8454-8458.	6.6	42
107	Gallium Cluster "Magic Melters― Journal of the American Chemical Society, 2004, 126, 8628-8629.	6.6	90
108	The Mobile Proton in Polyalanine Peptides. Journal of the American Chemical Society, 2004, 126, 16981-16987.	6.6	24

#	Article	IF	CITATIONS
109	Metal Ion Interactions with Polyalanine Peptides. Journal of Physical Chemistry B, 2004, 108, 6093-6097.	1.2	38
110	Water Molecule Adsorption on Protonated Dipeptides. Journal of the American Chemical Society, 2004, 126, 1206-1213.	6.6	32
111	Probing Helix Formation in Unsolvated Peptides. Journal of the American Chemical Society, 2003, 125, 10740-10747.	6.6	29
112	Hot and Solid Gallium Clusters: Too Small to Melt. Physical Review Letters, 2003, 91, 215508.	2.9	209
113	Helixâ^'Turnâ^'Helix Motifs in Unsolvated Peptides. Journal of the American Chemical Society, 2003, 125, 7186-7187.	6.6	27
114	Noncovalent Interactions between Unsolvated Peptides:Â Dissociation of Helical and Globular Peptide Complexes. Journal of Physical Chemistry B, 2003, 107, 14529-14536.	1.2	15
115	Direct Probing of Zwitterion Formation in Unsolvated Peptides. Journal of the American Chemical Society, 2003, 125, 8996-8997.	6.6	16
116	The Energy Landscape of Unsolvated Peptides:Â The Role of Context in the Stability of Alanine/Glycine Helices. Journal of the American Chemical Society, 2003, 125, 3941-3947.	6.6	19
117	Application of Molecular Beam Deflection Time-of-Flight Mass Spectrometry to Peptide Analysis. Analytical Chemistry, 2003, 75, 5512-5516.	3.2	18
118	A first-order transition in the charge-induced conformational changes of polymers. Journal of Chemical Physics, 2002, 116, 9964-9974.	1.2	5
119	Peptide Pinwheels. Journal of the American Chemical Society, 2002, 124, 1154-1155.	6.6	17
120	Noncovalent Interactions between Unsolvated Peptidesâ€. Journal of Physical Chemistry A, 2002, 106, 9655-9664.	1.1	30
121	Electric Susceptibility of Unsolvated Glycine-Based Peptides. Journal of the American Chemical Society, 2002, 124, 6737-6741.	6.6	48
122	The Initial Steps in the Hydration of Unsolvated Peptides:Â Water Molecule Adsorption on Alanine-Based Helices and Globules. Journal of the American Chemical Society, 2002, 124, 11148-11158.	6.6	53
123	The Energy Landscape of Unsolvated Peptides:Â Helix Formation and Cold Denaturation in Ac-A4G7A4+ H+. Journal of the American Chemical Society, 2002, 124, 4422-4431.	6.6	27
124	Nanocrystalline Aggregation of Serine Detected by Electrospray Ionization Mass Spectrometry:  Origin of the Stable Homochiral Gas-Phase Serine Octamer. Journal of Physical Chemistry B, 2002, 106, 1219-1228.	1.2	124
125	Structural information from ion mobility measurements: applications to semiconductor clusters. Chemical Society Reviews, 2001, 30, 26-35.	18.7	119
126	Helix Formation in Unsolvated Peptides:Â Side Chain Entropy Is Not the Determining Factor. Journal of the American Chemical Society, 2001, 123, 7907-7908.	6.6	27

#	Article	IF	Citations
127	Disrupting Helix Formation in Unsolvated Peptides. Journal of Physical Chemistry B, 2001, 105, 4436-4440.	1.2	26
128	Molecular Dynamics Simulations of the Rehydration of Folded and Unfolded Cytochrome c Ions in the Vapor Phase. Journal of the American Chemical Society, 2001, 123, 6503-6507.	6.6	25
129	Synthesis and Temperature-Dependence of Hydrogen-Terminated Silicon Clusters. Journal of Physical Chemistry B, 2001, 105, 4188-4194.	1.2	44
130	Helix Unfolding in Unsolvated Peptides. Journal of the American Chemical Society, 2001, 123, 5660-5667.	6.6	63
131	Permanent Electric Dipole and Conformation of Unsolvated Tryptophan. Journal of the American Chemical Society, 2001, 123, 8440-8441.	6.6	83
132	Raman and Fluorescence Spectra of Size-Selected, Matrix-Isolated C14and C18Neutral Carbon Clusters. Journal of Physical Chemistry A, 2001, 105, 3029-3033.	1.1	26
133	Structural Studies of Sc Metallofullerenes by High-resolution Ion Mobility Measurements. Journal of the American Chemical Society, 2001, 123, 6427-6428.	6.6	27
134	The smallest fullerene. Nature, 2000, 407, 26-27.	13.7	44
135	Transition from covalent to metallic behavior in group-14 clusters. Chemical Physics Letters, 2000, 317, 615-618.	1.2	76
136	PEPTIDES AND PROTEINS IN THE VAPOR PHASE. Annual Review of Physical Chemistry, 2000, 51, 179-207.	4.8	344
137	Observation of "Stick―and "Handle―Intermediates along the Fullerene Road. Physical Review Letters, 2000, 84, 2421-2424.	2.9	52
138	Modeling ionic mobilities by scattering on electronic density isosurfaces: Application to silicon cluster anions. Journal of Chemical Physics, 2000, 112, 4517-4526.	1.2	131
139	Conformations of Unsolvated Glycine-Based Peptides. Journal of Physical Chemistry B, 2000, 104, 2154-2158.	1.2	40
140	Conformations of Unsolvated Valine-Based Peptides. Journal of the American Chemical Society, 2000, 122, 9243-9256.	6.6	58
141	Solid Clusters above the Bulk Melting Point. Physical Review Letters, 2000, 85, 2530-2532.	2.9	270
142	Metal-Ion Enhanced Helicity in the Gas Phase. Journal of the American Chemical Society, 2000, 122, 12377-12378.	6.6	60
143	One Water Molecule Stiffens a Protein. Journal of the American Chemical Society, 2000, 122, 2950-2951.	6.6	49
144	Tin clusters adopt prolate geometries. Physical Review A, 1999, 60, 1235-1239.	1.0	101

#	Article	IF	CITATIONS
145	High-resolution ion mobility measurements of indium clusters: electron spill-out in metal cluster anions and cations. Chemical Physics Letters, 1999, 304, 19-22.	1.2	30
146	High-resolution ion mobility measurements for silicon cluster anions and cations. Journal of Chemical Physics, 1999, 111, 7865-7870.	1.2	139
147	Helix Formation in Unsolvated Alanine-Based Peptides:  Helical Monomers and Helical Dimers. Journal of the American Chemical Society, 1999, 121, 3494-3501.	6.6	152
148	Conformations of GlynH+ and AlanH+ Peptides in the Gas Phase. Biophysical Journal, 1999, 76, 1591-1597.	0.2	98
149	Molecular Dynamics Simulations of the Charge-Induced Unfolding and Refolding of Unsolvated Cytochrome c. Journal of Physical Chemistry B, 1999, 103, 10017-10021.	1.2	57
150	Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge. Physical Review Letters, 1999, 83, 2167-2170.	2.9	123
151	Thermal Unfolding of Unsolvated Cytochrome c:  Experiment and Molecular Dynamics Simulations. Journal of the American Chemical Society, 1999, 121, 2712-2721.	6.6	97
152	Ball-and-Chain Dimers from a Hot Fullerene Plasma. Journal of Physical Chemistry A, 1999, 103, 5275-5284.	1,1	37
153	Unfolding, Refolding, and Hydration of Proteins in the Gas Phase. Accounts of Chemical Research, 1999, 32, 360-367.	7.6	173
154	Hydration of Folded and Unfolded Gas-Phase Proteins:Â Saturation of Cytochromecand Apomyoglobin. Journal of the American Chemical Society, 1998, 120, 1327-1328.	6.6	55
155	Structures of medium-sized silicon clusters. Nature, 1998, 392, 582-585.	13.7	622
156	Structures of the Clusters Produced by Laser Desorption of Fullerenes:  [2+2] Cycloadducts of Preshrunk Cages. Journal of Physical Chemistry A, 1998, 102, 7919-7923.	1.1	27
157	Design of Helices That Are Stable in Vacuo. Journal of the American Chemical Society, 1998, 120, 12974-12975.	6.6	160
158	Mobilities of carbon cluster ions: Critical importance of the molecular attractive potential. Journal of Chemical Physics, 1998, 108, 2416-2423.	1.2	135
159	Dissociation Energies of Silicon Clusters: A Depth Gauge for the Global Minimum on the Potential Energy Surface. Physical Review Letters, 1998, 81, 4616-4619.	2.9	71
160	lonization of medium-sized silicon clusters and the geometries of the cations. Journal of Chemical Physics, 1998, 109, 9401-9409.	1,2	169
161	Raman spectra and calculated vibrational frequencies of size-selected C16, C18, and C20 clusters. Journal of Chemical Physics, 1998, 109, 9652-9655.	1.2	83
162	Structural Transitions in Sodium Chloride Nanocrystals. Physical Review Letters, 1997, 78, 4213-4216.	2.9	74

#	Article	IF	Citations
163	Surface reactions driven by cluster impact: Oxidation of Si(111) by (O2)n+ ($n\hat{a}^1/41600$). Journal of Chemical Physics, 1997, 106, 8855-8861.	1.2	13
164	Conformations, Unfolding, and Refolding of Apomyoglobin in Vacuum:Â An Activation Barrier for Gas-Phase Protein Folding. Journal of the American Chemical Society, 1997, 119, 2987-2994.	6.6	196
165	Structural Elucidation of Fullerene Dimers by High-Resolution Ion Mobility Measurements and Trajectory Calculation Simulations. Journal of Physical Chemistry A, 1997, 101, 1684-1688.	1.1	59
166	Protein Structurein Vacuo:Â Gas-Phase Conformations of BPTI and Cytochromec. Journal of the American Chemical Society, 1997, 119, 2240-2248.	6.6	409
167	Hydration of Gas-Phase Proteins:Â A Special Hydration Site on Gas-Phase BPTI. Journal of the American Chemical Society, 1997, 119, 9586-9587.	6.6	56
168	Hydration of Gas Phase Proteins:Â Folded +5 and Unfolded +7 Charge States of Cytochromec. Journal of Physical Chemistry B, 1997, 101, 847-851.	1.2	61
169	Structures of Silicon-Doped Carbon Clusters. Journal of Physical Chemistry A, 1997, 101, 1836-1840.	1.1	149
170	High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations. International Journal of Mass Spectrometry and Ion Processes, 1997, 165-166, 497-507.	1.9	107
171	Ion Mobility Measurements and their Applications to Clusters and Biomolecules., 1997, 32, 577-592.		671
172	High-resolution ion mobility studies of sodium chloride nanocrystals. Chemical Physics Letters, 1997, 267, 186-192.	1.2	61
173	Carbon Clusters Containing Two Metal Atoms:Â Structures, Growth Mechanism, and Fullerene Formation. Journal of the American Chemical Society, 1996, 118, 1139-1147.	6.6	33
174	"Denaturation―and Refolding of CytochromecinVacuo. Journal of the American Chemical Society, 1996, 118, 10313-10314.	6.6	84
175	An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chemical Physics Letters, 1996, 261, 86-91.	1.2	775
176	Metal-Containing Carbon Clusters: Structures, Isomerization, and Formation of NbCn+ Clusters. Journal of the American Chemical Society, 1995, 117, 8841-8850.	6.6	49
177	Drift Tube Studies of Large Carbon Clusters: New Isomers and the Mechanism of Giant Fullerene Formation. Journal of the American Chemical Society, 1995, 117, 10317-10324.	6.6	31
178	Networked and Endohedral La2Cn+ (n = $28-100$) Metallofullerenes. Journal of the American Chemical Society, 1995 , 117 , $6404-6405$.	6.6	24
179	Drift Tube Studies of Atomic Clusters. The Journal of Physical Chemistry, 1995, 99, 11-21.	2.9	183
180	Naked Protein Conformations: Cytochrome c in the Gas Phase. Journal of the American Chemical Society, 1995, 117, 10141-10142.	6.6	466

#	Article	IF	Citations
181	Small carbon rings: dissociation, isomerization, and a simple model based on strain. International Journal of Mass Spectrometry and Ion Processes, 1994, 138, 17-31.	1.9	71
182	Gas-phase self-assembly of endohedral metallofullerenes. Nature, 1994, 367, 718-720.	13.7	46
183	Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage. Nature, 1994, 372, 248-250.	13.7	122
184	Bonding of Metals to Carbon Rings: LaCn+ Isomers with La+ Inserted and Attached to the Ring. Journal of the American Chemical Society, 1994, 116, 5971-5972.	6.6	33
185	Mobilities of metal cluster ions: Aluminum and the electronic shell model. Journal of Chemical Physics, 1993, 98, 2399-2407.	1.2	57
186	Annealing and dissociation of carbon rings. Journal of Chemical Physics, 1993, 99, 1785-1795.	1.2	95
187	Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres. Journal of Chemical Physics, 1992, 96, 9180-9190.	1.2	192
188	Properties of deposited sizeâ€selected clusters: Reactivity of deposited silicon clusters. Journal of Chemical Physics, 1992, 97, 8312-8321.	1.2	50
189	Annealing of silicon clusters. Journal of the American Chemical Society, 1992, 114, 459-464.	6.6	7 5
190	Dissociation of large silicon clusters: the approach to bulk behavior. The Journal of Physical Chemistry, 1991, 95, 9181-9185.	2.9	188
191	Techniques used to study the chemistry of gas phase elemental clusters. Journal of Cluster Science, 1991, 2, 137-181.	1.7	7
192	Reactions of silicon cluster ions, Si+n (n=10–65), with water. Journal of Chemical Physics, 1991, 94, 2631-2639.	1.2	71
193	Interaction of silicon cluster ions with ammonia: Annealing, equilibria, high temperature kinetics, and saturation studies. Journal of Chemical Physics, 1991, 94, 3607-3618.	1.2	67
194	Silicon cluster ions: Evidence for a structural transition. Physical Review Letters, 1991, 67, 2994-2997.	2.9	360
195	Optical spectroscopy of metal clusters: Cu4+. Chemical Physics Letters, 1990, 166, 116-122.	1.2	57
196	Photodissociation of copper clusters, Cu+n (n = $3\hat{a}\in$ "8), in the 370 $\hat{a}\in$ "710 nm wavelength region. International Journal of Mass Spectrometry and Ion Processes, 1990, 102, 161-181.	1.9	34
197	Studies of the chemistry of large semiconductor cluster ions. International Journal of Mass Spectrometry and Ion Processes, 1990, 100, 625-646.	1.9	7
198	Interaction of silicon cluster ions with ammonia: The kinetics. Journal of Chemical Physics, 1990, 93, 5709-5718.	1.2	45

#	Article	IF	CITATIONS
199	Photodissociation of metal cluster ions. Dissociation energies and optical spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2537.	1.7	32
200	Chemistry of semiconductor clusters: reactions of Sin+ (n = $11-50$) with ethylene show evidence for numerous structural isomers. Journal of the American Chemical Society, 1990 , 112 , $3768-3773$.	6.6	56
201	Chemistry of semiconductor clusters: Large silicon clusters are much less reactive towards oxygen than the bulk. Journal of Chemical Physics, 1990, 93, 224-229.	1.2	93
202	Photodissociation kinetics of aluminum cluster ions: Determination of cluster dissociation energies. Journal of Chemical Physics, 1989, 91, 2912-2921.	1.2	108
203	Chemistry of semiconductor clusters. A survey of the reactions of Si25+ using low-energy ion beam techniques. Journal of the American Chemical Society, 1989, 111, 1979-1986.	6.6	20
204	Surface chemistry on metal clusters: Observation of multiple structures for C2H4 chemisorbed on aluminum clusters. Chemical Physics Letters, 1988, 149, 433-438.	1.2	9
205	Activation barriers for chemisorption of deuterium on aluminum cluster ions: Influence of oxygen preadsorption. Chemical Physics Letters, 1988, 144, 311-316.	1.2	16
206	Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium on aluminum cluster ions. Journal of the American Chemical Society, 1988, 110, 70-78.	6.6	51
207	Chemisorption on the microsurface of metal clusters: activation barriers and chemical reactions for carbon monoxide, nitrogen, oxygen, and methane on aluminum cluster. Journal of the American Chemical Society, 1988, 110, 6706-6716.	6.6	26
208	Collision induced dissociation of aluminum cluster ions with chemisorbed oxygen, AlnO+m (n=3–26,) Tj ETQqC	0.0 rgBT 1,2	Oyerlock 10
209	A detailed study of the reactions between size selected aluminum cluster ions, Al+n (n=3–26), and oxygen. Journal of Chemical Physics, 1987, 87, 5728-5738.	1.2	124
210	Collision induced dissociation of metal cluster ions: Bare aluminum clusters, Al+n (n=3–26). Journal of Chemical Physics, 1987, 86, 3876-3885.	1.2	232
211	The reactions of mass selected aluminum cluster ions, Al+n (n=4–25), with oxygen. Journal of Chemical Physics, 1986, 85, 5373-5375.	1.2	54
212	A laser–ion beam study of the photodissociation dynamics of the (CO2)+3 cluster. Journal of Chemical Physics, 1986, 84, 4882-4887.	1.2	21
213	Fragmentation dynamics and energy disposal in photodissociation of (N2O)2+ in the 458–660 nm wavelength range. Chemical Physics, 1985, 95, 469-472.	0.9	5
214	The formation and reactivity of HOC+: Interstellar implications. Journal of Chemical Physics, 1985, 83, 1121-1131.	1.2	53
215	Photodissociation of the SO2â«SO+2 dimer in the visible region of the spectrum: Product relative kinetic energy distributions and product angular distributions. Journal of Chemical Physics, 1985, 82, 1832-1840.	1.2	29
216	Kinetic isotope effect in gas-phase base-induced elimination reactions. Journal of the American Chemical Society, 1985, 107, 2818-2820.	6.6	31

#	Article	IF	Citations
217	Photodissociation of the dimanganese ion: Mn2+: a route to the energetics of metal clusters. Journal of the American Chemical Society, 1985, 107, 7339-7344.	6.6	59
218	The dynamics of photodissociation of cluster ions. II. Photodissociation of the (NO)+3 cluster in the visible wavelength range. Journal of Chemical Physics, 1984, 81, 222-230.	1.2	33
219	Energy disposal in photodissociation from magic angle measurements with a crossed highâ€energy ion beam and laser beam: Photodissociation dynamics of the (N2)+2 cluster in the 458–514 nm range. Journal of Chemical Physics, 1984, 81, 214-221.	1.2	69
220	Charge transfer halfâ€collisions: Photodissociation of the Krâ⟨O+2cluster ion with resolution of the O2product vibrational states. Journal of Chemical Physics, 1984, 81, 4369-4379.	1.2	69
221	Ion–molecule association reactions: A study of the temperature dependence of the reaction N+â‹2+N2+M → N+â‹4+M for M=N2, Ne, and He: Experiment and theory. Journal of Chemical Physic 288-297.	cs 1.1 984,	8153
222	On the structure and photodissociation of cluster ions in the gas phase. (N2) (O2+) and (NO)2+. Chemical Physics Letters, 1983, 102, 335-339.	1.2	9
223	Kinetics of ion–molecule collision complexes in the gas phase. Experiment and theory. Faraday Discussions of the Chemical Society, 1983, 75, 57-76.	2.2	42
224	Ion-molecule association reactions: reaction sequences initiated by protonated methanol (MeOH2+) in methanol; experiment and theory. Journal of the American Chemical Society, 1983, 105, 7024-7033.	6.6	74
225	Unimolecular and bimolecular reactions in the C4H6+â‹ system: Experiment and theory. Journal of Chemical Physics, 1983, 78, 3756-3766.	1.2	32
226	Investigation of the dynamics and energy disposal in the photodissociation of small ion clusters using a highâ€energy ion beam crossed with a laser beam: Photodissociation of (NO)2+. in the 488–660 nm range. Journal of Chemical Physics, 1983, 79, 6086-6096.	1.2	52
227	On the formation of HCO+ and HOC+ from the reaction between H+3 and CO. Journal of Chemical Physics, 1982, 77, 5847-5848.	1.2	39
228	The fragmentation of metastable NH+3 ions and isotopic analogs: an example of tunneling through a rotational barrier. Chemical Physics Letters, 1982, 92, 653-658.	1.2	5
229	Mechanism of the metastable reaction H2S+ \hat{a}^{\dagger} S+ + H2; product energy distributions and their dependence on temparature. Chemical Physics, 1982, 65, 19-28.	0.9	27
230	A crossed beam study of the reaction CO++NOâ†'(NCO)++O. Molecular Physics, 1981, 42, 97-107.	0.8	0
231	A crossed beam study of the reaction CO+ + NO → CO2 + + N. Molecular Physics, 1980, 40, 1197-1207.	0.8	1
232	A crossed beam study of the reaction of CO+with O2. Molecular Physics, 1980, 39, 787-798.	0.8	6