Ke Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/996824/publications.pdf

Version: 2024-02-01

		44069	4	10979
102	9,146	48		93
papers	citations	h-index		g-index
105	105	105		8978
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Intrapericardial hydrogel injection generates high cell retention and augments therapeutic effects of mesenchymal stem cells in myocardial infarction. Chemical Engineering Journal, 2022, 427, 131581.	12.7	15
2	Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy. Journal of Nanobiotechnology, 2022, 20, 35.	9.1	20
3	Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. International Journal of Biochemistry and Cell Biology, 2022, 146, 106206.	2.8	9
4	Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Advanced Biology, 2022, 6, 2101133.	2.5	0
5	Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. , 2022, 1, 100002.		34
6	Gecko-Inspired Adhesives with Asymmetrically Tilting-Oriented Micropillars. Langmuir, 2022, 38, 8890-8898.	3.5	7
7	Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nature Biomedical Engineering, 2022, 6, 791-805.	22.5	100
8	Engineering stem cell therapeutics for cardiac repair. Journal of Molecular and Cellular Cardiology, 2022, 171, 56-68.	1.9	12
9	Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer and Metastasis Reviews, 2021, 40, 71-88.	5.9	19
10	Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano, 2021, 15, 1100-1110.	14.6	48
11	Bispecific Antibody Inhalation Therapy for Redirecting Stem Cells from the Lungs to Repair Heart Injury. Advanced Science, 2021, 8, 2002127.	11.2	16
12	A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics, 2021, 11, 8894-8908.	10.0	10
13	Injection of ROSâ€Responsive Hydrogel Loaded with Basic Fibroblast Growth Factor into the Pericardial Cavity for Heart Repair. Advanced Functional Materials, 2021, 31, 2004377.	14.9	60
14	Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out?. Cells, 2021, 10, 641.	4.1	20
15	Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nature Communications, 2021, 12, 1412.	12.8	155
16	Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5, 1174-1188.	22.5	98
17	All Roads Lead to Rome (the Heart): Cell Retention and Outcomes From Various Delivery Routes of Cell Therapy Products to the Heart. Journal of the American Heart Association, 2021, 10, e020402.	3.7	49
18	Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Advanced Drug Delivery Reviews, 2021, 173, 504-519.	13.7	97

#	Article	IF	Citations
19	A Minimally Invasive Exosome Spray Repairs Heart after Myocardial Infarction. ACS Nano, 2021, 15, 11099-11111.	14.6	68
20	Bioengineering Technologies for Cardiac Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 681705.	4.1	15
21	Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nature Nanotechnology, 2021, 16, 942-951.	31.5	103
22	Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioactive Materials, 2021, 6, 1957-1972.	15.6	28
23	Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today, 2021, 39, 101210.	11.9	71
24	A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Frontiers in Oncology, 2021, 11, 641187.	2.8	6
25	Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity, 2021, 3, 255-271.	1.1	24
26	Imaging and Isolation of Extravasation-Participating Endothelial and Melanoma Cells During Angiopellosis. Methods in Molecular Biology, 2021, 2265, 417-425.	0.9	0
27	Generation and Manipulation of Exosomes. Methods in Molecular Biology, 2021, 2158, 295-305.	0.9	5
28	A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. Med, 2021, 2, 1253-1268.e4.	4.4	11
29	Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55767-55779.	8.0	30
30	Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 2020, 116, 353-367.	3.8	213
31	Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs. ACS Biomaterials Science and Engineering, 2020, 6, 6309-6320.	5.2	25
32	Recent Development in Therapeutic Cardiac Patches. Frontiers in Cardiovascular Medicine, 2020, 7, 610364.	2.4	47
33	Engineering better stem cell therapies for treating heart diseases. Annals of Translational Medicine, 2020, 8, 569-569.	1.7	8
34	Advances of exosome isolation techniques in lung cancer. Molecular Biology Reports, 2020, 47, 7229-7251.	2.3	17
35	Dermal exosomes containing miR-218-5p promote hair regeneration by regulating \hat{l}^2 -catenin signaling. Science Advances, 2020, 6, eaba1685.	10.3	90
36	Long Non-coding RNA LINC00115 Contributes to the Progression of Colorectal Cancer by Targeting miR-489-3p via the PI3K/AKT/mTOR Pathway. Frontiers in Genetics, 2020, 11, 567630.	2.3	20

#	Article	IF	Citations
37	Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. Nano Research, 2020, 13, 2197-2202.	10.4	18
38	Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics, 2020, 10, 3474-3487.	10.0	226
39	Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nature Communications, 2020, $11,1064$.	12.8	228
40	Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair. Science Advances, 2020, 6, eaay0589.	10.3	55
41	An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Science Translational Medicine, 2020, 12, .	12.4	131
42	A pre-investigational new drug study of lung spheroid cell therapy for treating pulmonary fibrosis. Stem Cells Translational Medicine, 2020, 9, 786-798.	3.3	16
43	Exosome and Biomimetic Nanoparticle Therapies for Cardiac Regenerative Medicine. Current Stem Cell Research and Therapy, 2020, 15, 674-684.	1.3	13
44	A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Advanced Healthcare Materials, 2019, 8, e1801011.	7.6	61
45	Needle-Free Injection of Exosomes Derived from Human Dermal Fibroblast Spheroids Ameliorates Skin Photoaging. ACS Nano, 2019, 13, 11273-11282.	14.6	142
46	Circulating tumor cells exit circulation while maintaining multicellularity augmenting metastatic potential. Journal of Cell Science, $2019, 132, \ldots$	2.0	36
47	Chemical Engineering of Cell Therapy for Heart Diseases. Accounts of Chemical Research, 2019, 52, 1687-1696.	15.6	50
48	Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cellâ€Secretome to Treat Endometrial Injury in a Rat Model of Asherman's Syndrome. Advanced Healthcare Materials, 2019, 8, e1900411.	7.6	103
49	Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. Advanced Therapeutics, 2019, 2, 1900009.	3.2	7
50	Cell and biomaterial-based approaches to uterus regeneration. International Journal of Energy Production and Management, 2019, 6, 141-148.	3.7	34
51	Antibody-Armed Platelets for the Regenerative Targeting of Endogenous Stem Cells. Nano Letters, 2019, 19, 1883-1891.	9.1	31
52	Cells and cell derivatives as drug carriers for targeted delivery. Medicine in Drug Discovery, 2019, 3, 100014.	4.5	26
53	Plateletâ€Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials, 2019, 29, 1803567.	14.9	92
54	Porous Organic Polymer-Coated Band-Aids for Phototherapy of Bacteria-Induced Wound Infection. ACS Applied Bio Materials, 2019, 2, 613-618.	4.6	21

#	Article	IF	Citations
55	microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. Journal of Clinical Investigation, 2019, 129, 2237-2250.	8.2	197
56	Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Translational Medicine, 2018, 7, 354-359.	3.3	95
57	Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nature Biomedical Engineering, 2018, 2, 17-26.	22.5	161
58	Body builder: from synthetic cells to engineered tissues. Current Opinion in Cell Biology, 2018, 54, 37-42.	5.4	15
59	Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry B, 2018, 6, 7354-7365.	5.8	70
60	Cardiac cell–integrated microneedle patch for treating myocardial infarction. Science Advances, 2018, 4, eaat9365.	10.3	192
61	Pretargeting and Bioorthogonal Click Chemistry-Mediated Endogenous Stem Cell Homing for Heart Repair. ACS Nano, 2018, 12, 12193-12200.	14.6	42
62	NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells. ACS Applied Materials & Interfaces, 2018, 10, 37783-37796.	8.0	32
63	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	22.5	220
64	Cardiac Stem Cell Patch Integrated with Microengineered Blood Vessels Promotes Cardiomyocyte Proliferation and Neovascularization after Acute Myocardial Infarction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33088-33096.	8.0	66
65	Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure. ACS Nano, 2018, 12, 6536-6544.	14.6	109
66	Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 2018, 8, 1869-1878.	10.0	263
67	A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart. Tissue Engineering - Part C: Methods, 2017, 23, 146-155.	2.1	56
68	Response by Luo et al to Letter Regarding Article, "Fabrication of Synthetic Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice― Circulation Research, 2017, 120, e48-e49.	4.5	1
69	Fabrication of Synthetic Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice. Circulation Research, 2017, 120, 1768-1775.	4.5	158
70	Intracoronary allogeneic cardiosphereâ€derived stem cells are safe for use in dogs with dilated cardiomyopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 1503-1512.	3.6	25
71	Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nature Communications, 2017, 8, 13724.	12.8	203
72	Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction. ACS Nano, 2017, 11, 9738-9749.	14.6	128

#	Article	IF	CITATIONS
73	Safety and Efficacy of Allogeneic Lung Spheroid Cells in a Mismatched Rat Model of Pulmonary Fibrosis. Stem Cells Translational Medicine, 2017, 6, 1905-1916.	3.3	27
74	Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respiratory Research, 2017, 18, 132.	3.6	38
75	Angiopellosis as an Alternative Mechanism of Cell Extravasation. Stem Cells, 2017, 35, 170-180.	3.2	42
76	Magnetic Targeting of Stem Cell Derivatives Enhances Hepatic Engraftment into Structurally Normal Liver. Cell Transplantation, 2017, 26, 1868-1877.	2. 5	7
77	Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China. Veterinary Microbiology, 2016, 188, 41-46.	1.9	15
78	Effects of Matrix Metalloproteinases on the Performance of Platelet Fibrin Gel Spiked With Cardiac Stem Cells in Heart Repair. Stem Cells Translational Medicine, 2016, 5, 793-803.	3.3	22
79	Magnetically Targeted Stem Cell Delivery for Regenerative Medicine. Journal of Functional Biomaterials, 2015, 6, 526-546.	4.4	60
80	Intravenous Cardiac Stem Cell-Derived Exosomes Ameliorate Cardiac Dysfunction in Doxorubicin Induced Dilated Cardiomyopathy. Stem Cells International, 2015, 2015, 1-8.	2.5	78
81	Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis. Stem Cells Translational Medicine, 2015, 4, 1265-1274.	3.3	56
82	Cellular Postconditioning. Circulation: Heart Failure, 2015, 8, 322-332.	3.9	79
83	Cardiac regenerative potential of cardiosphereâ€derived cells from adult dog hearts. Journal of Cellular and Molecular Medicine, 2015, 19, 1805-1813.	3.6	22
84	Isolation and Cryopreservation of Neonatal Rat Cardiomyocytes. Journal of Visualized Experiments, 2015, , .	0.3	24
85	Rapid and Efficient Production of Coronary Artery Ligation and Myocardial Infarction in Mice Using Surgical Clips. PLoS ONE, 2015, 10, e0143221.	2.5	12
86	Allogeneic Cardiospheres Delivered via Percutaneous Transendocardial Injection Increase Viable Myocardium, Decrease Scar Size, and Attenuate Cardiac Dilatation in Porcine Ischemic Cardiomyopathy. PLoS ONE, 2014, 9, e113805.	2. 5	48
87	Relative Roles of CD90 and câ€Kit to the Regenerative Efficacy of Cardiosphereâ€Derived Cells in Humans and in a Mouse Model of Myocardial Infarction. Journal of the American Heart Association, 2014, 3, e001260.	3.7	104
88	Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Reports, 2014, 2, 606-619.	4.8	705
89	Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 2014, 35, 8528-8539.	11.4	101
90	Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nature Communications, 2014, 5, 4880.	12.8	119

#	Article	IF	CITATION
91	Importance of Cell-Cell Contact in the Therapeutic Benefits of Cardiosphere-Derived Cells. Stem Cells, 2014, 32, 2397-2406.	3.2	55
92	Safety and Efficacy of Allogeneic Cell Therapy in Infarcted Rats Transplanted With Mismatched Cardiosphere-Derived Cells. Circulation, 2012, 125, 100-112.	1.6	262
93	Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit after Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplantation, 2012, 21, 1121-1135.	2.5	86
94	Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, The, 2012, 379, 895-904.	13.7	1,294
95	Doseâ€dependent functional benefit of human cardiosphere transplantation in mice with acute myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 2112-2116.	3.6	49
96	Intramyocardial Injection of Platelet Gel Promotes Endogenous Repair and Augments Cardiac Function in Rats With Myocardial Infarction. Journal of the American College of Cardiology, 2012, 59, 256-264.	2.8	47
97	Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells. Journal of the American College of Cardiology, 2012, 59, 942-953.	2.8	427
98	Transplantation of platelet gel spiked with cardiosphere-derived cells boosts structural and functional benefits relative to gel transplantation alone in rats with myocardial infarction. Biomaterials, 2012, 33, 2872-2879.	11.4	44
99	Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials, 2012, 33, 5317-5324.	11.4	100
100	Exploring cellular adhesion and differentiation in a microâ€/nanoâ€hybrid polymer scaffold. Biotechnology Progress, 2010, 26, 838-846.	2.6	51
101	Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction. Circulation Research, 2010, 106, 1570-1581.	4.5	226
102	Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials, 2008, 29, 2802-2812.	11.4	66