
Dirk Eick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/996536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RNA Polymerase II Carboxy-Terminal Domain (CTD) Code. Chemical Reviews, 2013, 113, 8456-8490.	47.7	368
2	Chemotherapeutic Drugs Inhibit Ribosome Biogenesis at Various Levels. Journal of Biological Chemistry, 2010, 285, 12416-12425.	3.4	356
3	Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nature Structural and Molecular Biology, 2011, 18, 956-963.	8.2	296
4	Control of cell growth by c-Myc in the absence of cell division. Current Biology, 1999, 9, 1255-1258.	3.9	267
5	Transcribing RNA Polymerase II Is Phosphorylated at CTD Residue Serine-7. Science, 2007, 318, 1780-1782.	12.6	258
6	TFIIH Kinase Places Bivalent Marks on the Carboxy-Terminal Domain of RNA Polymerase II. Molecular Cell, 2009, 34, 387-393.	9.7	235
7	Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 55-62.	1.9	225
8	Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene Expression. Science, 2007, 318, 1777-1779.	12.6	221
9	CTD Tyrosine Phosphorylation Impairs Termination Factor Recruitment to RNA Polymerase II. Science, 2012, 336, 1723-1725.	12.6	215
10	Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nature Structural and Molecular Biology, 2011, 18, 977-983.	8.2	204
11	H2B Ubiquitylation Acts as a Barrier to Ctk1 Nucleosomal Recruitment Prior to Removal by Ubp8 within a SAGA-Related Complex. Molecular Cell, 2007, 27, 275-288.	9.7	196
12	The C-Terminal Domain of RNA Polymerase II Is Modified by Site-Specific Methylation. Science, 2011, 332, 99-103.	12.6	190
13	CDK9-dependent RNA polymerase II pausing controls transcription initiation. ELife, 2017, 6, .	6.0	179
14	Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. International Journal of Cancer, 2000, 87, 787-793.	5.1	178
15	Mammalian WDR12 is a novel member of the Pes1–Bop1 complex and is required for ribosome biogenesis and cell proliferation. Journal of Cell Biology, 2005, 170, 367-378.	5.2	166
16	A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Research, 2003, 31, 6148-6156.	14.5	160
17	CDK9 directs H2B monoubiquitination and controls replicationâ€dependent histone mRNA 3′â€end processing. EMBO Reports, 2009, 10, 894-900.	4.5	142
18	The nucleolar SUMOâ€specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Reports, 2008, 9, 273-279.	4.5	141

DIRK EICK

#	Article	IF	CITATIONS
19	The structure and substrate specificity of human Cdk12/Cyclin K. Nature Communications, 2014, 5, 3505.	12.8	141
20	Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Research, 2012, 22, 2031-2042.	5.5	132
21	Molecular evolution of the RNA polymerase II CTD. Trends in Genetics, 2008, 24, 289-296.	6.7	129
22	Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO Journal, 2012, 31, 2784-2797.	7.8	123
23	Heptad-Specific Phosphorylation of RNA PolymeraseÂll CTD. Molecular Cell, 2016, 61, 305-314.	9.7	118
24	4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biology, 2013, 10, 1623-1630.	3.1	117
25	Interdependence of Pes1, Bop1, and WDR12 Controls Nucleolar Localization and Assembly of the PeBoW Complex Required for Maturation of the 60S Ribosomal Subunit. Molecular and Cellular Biology, 2007, 27, 3682-3694.	2.3	116
26	CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Research, 2013, 41, 1591-1603.	14.5	87
27	Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Research, 2006, 34, 3030-3043.	14.5	79
28	Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. ELife, 2014, 3, e02105.	6.0	76
29	Conditional Expression of RNA Polymerase II in Mammalian Cells. Journal of Biological Chemistry, 2000, 275, 24375-24382.	3.4	74
30	Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene, 2005, 24, 520-524.	5.9	68
31	Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Molecular Cell, 2018, 69, 48-61.e6.	9.7	66
32	The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Research, 2004, 32, 35-44.	14.5	58
33	Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. Molecular Cell, 2019, 73, 84-96.e7.	9.7	50
34	Role of the Mammalian RNA Polymerase II C-Terminal Domain (CTD) Nonconsensus Repeats in CTD Stability and Cell Proliferation. Molecular and Cellular Biology, 2005, 25, 7665-7674.	2.3	49
35	RNA Polymerase II C-terminal Heptarepeat Domain Ser-7 Phosphorylation Is Established in a Mediator-dependent Fashion. Journal of Biological Chemistry, 2010, 285, 188-196.	3.4	49
36	The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing. Nucleic Acids Research, 2007, 35, 789-800.	14.5	41

DIRK EICK

#	Article	IF	CITATIONS
37	The CALM and CALM/AF10 interactor CATS is a marker for proliferation. Molecular Oncology, 2008, 2, 356-367.	4.6	36
38	Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels. Transcription, 2013, 4, 192-197.	3.1	31
39	Cyclin-dependent Kinase 9 Links RNA Polymerase II Transcription to Processing of Ribosomal RNA. Journal of Biological Chemistry, 2013, 288, 21173-21183.	3.4	27
40	Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism. Biological Chemistry, 2013, 394, 1133-1143.	2.5	27
41	DEAD-box helicase DDX27 regulates 3′ end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Experimental Cell Research, 2015, 334, 146-159.	2.6	26
42	Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3944-E3953.	7.1	24
43	Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II. Transcription, 2015, 6, 91-101.	3.1	22
44	The tumor suppressor p53 connects ribosome biogenesis to cell cycle control: a double-edged sword. Oncotarget, 2010, 1, 43-47.	1.8	21
45	Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Scientific Reports, 2016, 6, 27401.	3.3	17
46	Transcriptome analysis of dominant-negative Brd4 mutants identifies Brd4-specific target genes of small molecule inhibitor JQ1. Scientific Reports, 2017, 7, 1684.	3.3	17
47	Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. RNA Biology, 2012, 9, 1144-1146.	3.1	16
48	MIR sequences recruit zinc finger protein ZNF768 to expressed genes. Nucleic Acids Research, 2019, 47, 700-715.	14.5	14
49	Rapid conditional knock-down–knock-in system for mammalian cells. Nucleic Acids Research, 2007, 35, e17-e17.	14.5	12
50	Getting Access to Low-Complexity Domain Modifications. Trends in Biochemical Sciences, 2016, 41, 894-897.	7.5	11
51	A Nonradioactive Assay to Measure Production and Processing of Ribosomal RNA by 4sU-Tagging. Methods in Molecular Biology, 2016, 1455, 121-131.	0.9	2
52	Getting to grips with c-Myc. ELife, 2018, 7, .	6.0	1
53	Extension of the minimal functional unit of the RNA polymerase II CTD from yeast to mammalian cells. Biology Letters, 2019, 15, 20190068.	2.3	1