Jeroen Heuts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/996372/publications.pdf

Version: 2024-02-01

81900 110387 6,750 65 39 64 citations g-index h-index papers 66 66 66 9179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharmaceutical Research, 2010, 27, 796-810.	3.5	1,402
2	Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharmaceutical Research, 2008, 25, 1487-1499.	3.5	1,013
3	mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 2021, 601, 120586.	5. 2	647
4	Strategies for the Assessment of Protein Aggregates in Pharmaceutical Biotech Product Development. Pharmaceutical Research, 2011, 28, 920-933.	3.5	312
5	N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine, 2007, 25, 144-153.	3.8	215
6	Protein Instability and Immunogenicity: Roadblocks to Clinical Application of Injectable Protein Delivery Systems for Sustained Release. Journal of Pharmaceutical Sciences, 2012, 101, 946-954.	3.3	205
7	Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharmaceutical Research, 2017, 34, 1152-1170.	3.5	180
8	Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010, 28, 6282-6291.	3.8	176
9	Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharmaceutical Research, 2014, 31, 541-553.	3.5	161
10	Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs, 2012, 4, 740-752.	5.2	137
11	Oxidized and Aggregated Recombinant Human Interferon Beta is Immunogenic in Human Interferon Beta Transgenic Mice. Pharmaceutical Research, 2011, 28, 2393-2402.	3.5	108
12	Mass Spectrometric Analysis of Intact Human Monoclonal Antibody Aggregates Fractionated by Size-Exclusion Chromatography. Pharmaceutical Research, 2010, 27, 2197-2204.	3.5	100
13	Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release, 2012, 161, 363-376.	9.9	93
14	Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. Journal of Controlled Release, 2010, 148, 117-121.	9.9	82
15	Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. Journal of Controlled Release, 2016, 226, 98-106.	9.9	82
16	Immunological Risk of Injectable Drug Delivery Systems. Pharmaceutical Research, 2009, 26, 1303-1314.	3.5	79
17	IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of Controlled Release, 2015, 218, 53-62.	9.9	78
18	Cationic Liposomes Loaded with a Synthetic Long Peptide and Poly(I:C): a Defined Adjuvanted Vaccine for Induction of Antigen-Specific T Cell Cytotoxicity. AAPS Journal, 2015, 17, 216-226.	4.4	77

#	Article	IF	CITATIONS
19	Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. Journal of Controlled Release, 2018, 269, 347-354.	9.9	75
20	Postproduction Handling and Administration of Protein Pharmaceuticals and Potential Instability Issues. Journal of Pharmaceutical Sciences, 2018, 107, 2013-2019.	3.3	75
21	Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: Effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine, 2008, 26, 6555-6563.	3.8	68
22	Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine, 2011, 29, 4761-4770.	3.8	65
23	Towards Heat-stable Oxytocin Formulations: Analysis of Degradation Kinetics and Identification of Degradation Products. Pharmaceutical Research, 2009, 26, 1679-1688.	3.5	64
24	Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. Journal of Controlled Release, 2010, 144, 17-24.	9.9	61
25	Detection and Characterization of Subvisible Aggregates of Monoclonal IgG in Serum. Pharmaceutical Research, 2012, 29, 2202-2212.	3.5	61
26	Analytical approaches to assess the degradation of therapeutic proteins. TrAC - Trends in Analytical Chemistry, 2013, 49, 118-125.	11.4	60
27	Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunology Research, 2017, 5, 222-233.	3.4	60
28	Diphtheria toxoid and N -trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. Journal of Controlled Release, 2017, 262, 28-36.	9.9	57
29	Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: Preparation, characterization and evaluation in guinea pigs. Vaccine, 2007, 25, 6818-6829.	3.8	55
30	Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine, 2012, 30, 5341-5348.	3.8	55
31	Preclinical Models Used for Immunogenicity Prediction of Therapeutic Proteins. Pharmaceutical Research, 2013, 30, 1719-1728.	3.5	53
32	Submicron Size Particles of a Murine Monoclonal Antibody Are More Immunogenic Than Soluble Oligomers or Micron Size Particles Upon Subcutaneous Administration in Mice. Journal of Pharmaceutical Sciences, 2018, 107, 2847-2859.	3.3	52
33	Physicochemical and Immunological Characterization of N,N,N-Trimethyl Chitosan-Coated Whole Inactivated Influenza Virus Vaccine for Intranasal Administration. Pharmaceutical Research, 2009, 26, 1353-1364.	3.5	51
34	Adjuvant Effect of Cationic Liposomes for Subunit Influenza Vaccine: Influence of Antigen Loading Method, Cholesterol and Immune Modulators. Pharmaceutics, 2013, 5, 392-410.	4.5	51
35	Fluorescence Single Particle Tracking for the Characterization of Submicron Protein Aggregates in Biological Fluids and Complex Formulations. Pharmaceutical Research, 2011, 28, 1112-1120.	3.5	48
36	Chemical Modifications in Aggregates of Recombinant Human Insulin Induced by Metal-Catalyzed Oxidation: Covalent Cross-Linking via Michael Addition to Tyrosine Oxidation Products. Pharmaceutical Research, 2012, 29, 2276-2293.	3.5	46

#	Article	IF	CITATIONS
37	No Touching! Abrasion of Adsorbed Protein Is the Root Cause of Subvisible Particle Formation During Stirring. Journal of Pharmaceutical Sciences, 2016, 105, 519-529.	3.3	44
38	Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides. Pharmaceutical Research, 2018, 35, 207.	3.5	44
39	A Comprehensive Evaluation of Nanoparticle Tracking Analysis (NanoSight) for Characterization of Proteinaceous Submicron Particles. Journal of Pharmaceutical Sciences, 2016, 105, 3366-3375.	3.3	42
40	The Science is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines. Journal of Pharmaceutical Sciences, 2021, 110, 627-634.	3.3	42
41	Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. Journal of Controlled Release, 2016, 242, 141-147.	9.9	38
42	Stable sugar-based protein formulations by supercritical fluid drying. International Journal of Pharmaceutics, 2008, 346, 102-108.	5.2	36
43	Efficacy of pulmonary insulin delivery in diabetic rats: Use of a model-based approach in the evaluation of insulin powder formulations. Journal of Controlled Release, 2008, 127, 257-266.	9.9	35
44	In Vivo Fluorescence Imaging of $\lg G1$ Aggregates After Subcutaneous and Intravenous Injection in Mice. Pharmaceutical Research, 2014, 31, 216-227.	3.5	32
45	Nanoparticulate Impurities in Pharmaceutical-Grade Sugars and their Interference with Light Scattering-Based Analysis of Protein Formulations. Pharmaceutical Research, 2015, 32, 2419-2427.	3.5	31
46	Potential Issues With the Handling of Biologicals in a Hospital. Journal of Pharmaceutical Sciences, 2017, 106, 1688-1689.	3.3	22
47	Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics, 2021, 13, 596.	4.5	21
48	The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine and Growth Factor Reviews, 2021, 62, 1-14.	7.2	21
49	Fate of Multimeric Oligomers, Submicron, and Micron Size Aggregates of Monoclonal Antibodies Upon Subcutaneous Injection in Mice. Journal of Pharmaceutical Sciences, 2016, 105, 1693-1704.	3.3	19
50	Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102395.	3.3	17
51	A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. European Journal of Pharmaceutical Sciences, 2012, 45, 467-474.	4.0	14
52	Protein–polyelectrolyte interactions: Monitoring particle formation and growth by nanoparticle tracking analysis and flow imaging microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 339-345.	4.3	12
53	Formulation of Cell-Based Medicinal Products: A Question of Life or Death?. Journal of Pharmaceutical Sciences, 2021, 110, 1885-1894.	3.3	11
54	Peptide Amphiphile Nanoparticles Enhance the Immune Response Against a CpGâ€Adjuvanted Influenza Antigen. Advanced Healthcare Materials, 2014, 3, 343-348.	7.6	10

#	Article	lF	CITATION
55	Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability. Pharmaceutical Research, 2018, 35, 150.	3.5	10
56	Monoclonal Antibody Dimers Induced by Low pH, Heat, or Light Exposure Are Not Immunogenic Upon Subcutaneous Administration in a Mouse Model. Journal of Pharmaceutical Sciences, 2020, 109, 730-738.	3.3	10
57	Shifting Paradigms Revisited: Biotechnology and the Pharmaceutical Sciences. Journal of Pharmaceutical Sciences, 2020, 109, 30-43.	3.3	8
58	Simplified Monopalmitoyl Tollâ€like Receptor 2 Ligand Miniâ€UPam for Selfâ€Adjuvanting Neoantigenâ€Based Synthetic Cancer Vaccines. ChemBioChem, 2021, 22, 1215-1222.	2.6	5
59	Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth. Frontiers in Allergy, 2021, 2, 642788.	2.8	5
60	Evaluation of the high-pressure extrusion technique as a method for sizing plasmid DNA-containing cationic liposomes. Journal of Liposome Research, 2011, 21, 286-295.	3.3	4
61	Micro-Flow Imaging as a quantitative tool to assess size and agglomeration of PLGA microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 91-104.	4.3	4
62	A Flow Imaging Microscopy–Based Method Using Mass-to-Volume Ratio to Derive the Porosity of PLGA Microparticles. Journal of Pharmaceutical Sciences, 2017, 106, 3378-3384.	3.3	4
63	Immunological Evaluation InÂVitro of Nanoparticulate Impurities Isolated From Pharmaceutical-Grade Sucrose. Journal of Pharmaceutical Sciences, 2021, 110, 952-958.	3.3	2
64	Advanced Therapy Medicinal Products: What's in a Name?. Journal of Pharmaceutical Sciences, 2020, 109, 3282-3284.	3.3	1
65	Quantification of Lipid and Peptide Content in Antigenic Peptide-loaded Liposome Formulations by Reversed-phase UPLC using UV Absorbance and Evaporative Light Scattering Detection. Journal of Pharmaceutical Sciences, 2022, 111, 1040-1049.	3.3	1