Maria Dolores Marcos MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995430/publications.pdf

Version: 2024-02-01

192 papers

10,723 citations

53 h-index 96 g-index

201 all docs

201 docs citations

times ranked

201

11250 citing authors

#	Article	lF	Citations
1	High content and dispersion of Gd in bimodal porous silica: T2 contrast agents under ultra-high magnetic fields. Microporous and Mesoporous Materials, 2022, 336, 111863.	2.2	3
2	Generalized "one-pot―preparative strategy to obtain highly functionalized silica-based mesoporous spherical particles. Microporous and Mesoporous Materials, 2022, 337, 111942.	2.2	4
3	Towards the Enhancement of Essential Oil Components' Antimicrobial Activity Using New Zein Protein-Gated Mesoporous Silica Microdevices. International Journal of Molecular Sciences, 2021, 22, 3795.	1.8	12
4	Gene-Directed Enzyme Prodrug Therapy by Dendrimer-Like Mesoporous Silica Nanoparticles against Tumor Cells. Nanomaterials, 2021, 11, 1298.	1.9	6
5	Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release. Nanomaterials, 2021, 11, 1280.	1.9	5
6	Nitroarene hydrogenation catalysts based on Pd nanoparticles glued with PDA on inorganic supports: Multivariate Curve Resolution as an useful tool to compare the catalytic activity in multi-step reactions. Applied Catalysis A: General, 2021, 619, 118125.	2.2	2
7	Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics, 2021, 13, 982.	2.0	5
8	Precatalyst or dosing-device? The [Pd2 $\{\hat{1}\frac{1}{4}-(C6H4)PPh2\}2\{\hat{1}\frac{1}{4}-O2C(C6H5)\}2\}$ complex anchored on a carboxypolystyrene polymer as an effective supplier of palladium catalytically active nanoparticles for the Suzuki-Miyaura reaction. Journal of Catalysis, 2020, 381, 26-37.	3.1	8
9	Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of Îμ-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier. Pharmaceutics, 2020, 12, 1126.	2.0	11
10	Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials, 2020, 10, 1290.	1.9	8
11	A Sensitive Nanosensor for the In Situ Detection of the Cannibal Drug. ACS Sensors, 2020, 5, 2966-2972.	4.0	7
12	New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences, 2020, 21, 6502.	1.8	43
13	Nanoparticle–cell–nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells. Chemical Communications, 2020, 56, 7273-7276.	2.2	7
14	Nanosensor for Sensitive Detection of the New Psychedelic Drug 25lâ€NBOMe. Chemistry - A European Journal, 2020, 26, 2813-2816.	1.7	11
15	Lab and Pilot-Scale Synthesis of MxOm@SiC Core–Shell Nanoparticles. Materials, 2020, 13, 649.	1.3	2
16	Highly Active Hydrogenation Catalysts Based on Pd Nanoparticles Dispersed along Hierarchical Porous Silica Covered with Polydopamine as Interfacial Glue. Catalysts, 2020, 10, 449.	1.6	9
17	A NIR light-triggered drug delivery system using coreâ€"shell gold nanostarsâ€"mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chemical Communications, 2019, 55, 9039-9042.	2.2	27
18	New Oleic Acidâ€Capped Mesoporous Silica Particles as Surfactantâ€Responsive Delivery Systems. ChemistryOpen, 2019, 8, 1052-1056.	0.9	7

#	Article	IF	Citations
19	Janus Gold Nanostars–Mesoporous Silica Nanoparticles for NIR‣ightâ€Triggered Drug Delivery. Chemistry - A European Journal, 2019, 25, 8471-8478.	1.7	30
20	A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzymeâ€Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chemistry - A European Journal, 2019, 25, 3575-3581.	1.7	11
21	Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry, 2018, 71, 776-785.	0.8	6
22	11B-MAS NMR approach to the boron adsorption mechanism on a glucose-functionalised mesoporous silica matrix. Microporous and Mesoporous Materials, 2018, 266, 232-241.	2.2	14
23	Anilinopyridine–metal complexes for the selective chromogenic sensing of cyanide anion. Journal of Coordination Chemistry, 2018, 71, 786-796.	0.8	7
24	Gated Porous Materials for Biomedical Applications. From Biomaterials Towards Medical Devices, 2018, , 113-183.	0.0	1
25	Future Perspective on the Smart Delivery of Biomolecules. From Biomaterials Towards Medical Devices, 2018, , 363-371.	0.0	2
26	Toward chemical communication between nanodevices. Nano Today, 2018, 18, 8-11.	6.2	15
27	<i>i>iμ</i> â€Polylysineâ€Capped Mesoporous Silica Nanoparticles as Carrier of the <i>C</i> 9 <i>h</i> Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 2018, 24, 1890-1897.	1.7	29
28	A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. Journal of Catalysis, 2018, 367, 283-295.	3.1	29
29	Gold Nanostars Coated with Mesoporous Silica Are Effective and Nontoxic Photothermal Agents Capable of Gate Keeping and Laser-Induced Drug Release. ACS Applied Materials & Emp; Interfaces, 2018, 10, 27644-27656.	4.0	57
30	Improving the Antimicrobial Power of Lowâ€Effective Antimicrobial Molecules Through Nanotechnology. Journal of Food Science, 2018, 83, 2140-2147.	1.5	18
31	Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 2018, 23, 375.	1.7	11
32	Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 2017, 248, 60-70.	4.8	31
33	Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & amp; Interfaces, 2017, 9, 11332-11336.	4.0	64
34	Enzymeâ€Controlled Nanodevice for Acetylcholineâ€Triggered Cargo Delivery Based on Janus Au–Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 4276-4281.	1.7	27
35	Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 2017, 53, 3559-3562.	2.2	25
36	Acetylcholinesteraseâ€capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors. Chemistry - an Asian Journal, 2017, 12, 775-784.	1.7	7

#	Article	IF	Citations
37	Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamerâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 8581-8584.	1.7	33
38	Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 2017, 233, 228-236.	4.2	70
39	Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 2017, 8, 15511.	5.8	96
40	A <i>Mycoplasma</i> Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 2017, 82, 337-341.	1.3	13
41	Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxinâ€A. ChemistryOpen, 2017, 6, 653-659.	0.9	20
42	Auâ€"Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. Journal of Materials Chemistry B, 2017, 5, 6734-6739.	2.9	17
43	Selfâ€Regulated Glucoseâ€Sensitive Neoglycoenzymeâ€Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 2017, 23, 1353-1360.	1.7	55
44	Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chemistry, 2017, 218, 471-478.	4.2	43
45	Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids. Sensors, 2017, 17, 2134.	2.1	9
46	Rapid Biosynthesis of Silver Nanoparticles Using Pepino (Solanum muricatum) Leaf Extract and Their Cytotoxicity on HeLa Cells. Materials, 2016, 9, 325.	1.3	22
47	Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 9-17.	2.0	15
48	Enrichment of stirred yogurts with folic acid encapsulated in pH-responsive mesoporous silica particles: Bioaccessibility modulation and physico-chemical characterization. LWT - Food Science and Technology, 2016, 72, 351-360.	2.5	17
49	Stability of different mesoporous silica particles during an inÂvitro digestion. Microporous and Mesoporous Materials, 2016, 230, 196-207.	2.2	23
50	Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection of <i>Mycoplasma</i> and Cocaine. Chemistry - A European Journal, 2016, 22, 13488-13495.	1.7	17
51	Targeting Innate Immunity with dsRNAâ€Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 2016, 22, 1582-1586.	1.7	30
52	Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 2016, 32, 1195-1200.	1.6	26
53	Potentiometric thick-film sensors for measuring the pH of concrete. Cement and Concrete Composites, 2016, 68, 66-76.	4.6	20
54	Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 2016, 196, 66-75.	4.2	38

#	Article	IF	Citations
55	Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 2015, 31, 3753-3762.	1.6	104
56	Heterogeneous Gold Catalyst: Synthesis, Characterization, and Application in 1,4-Addition of Boronic Acids to Enones. ACS Catalysis, 2015, 5, 5060-5067.	5.5	19
57	Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 2015, 135, 652-660.	2.5	48
58	Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2015, 217, 30-38.	2.2	7
59	Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 2015, 56, 77-85.	2.8	22
60	Ceramic foam supported active materials for boron remediation in water. Desalination, 2015, 374, 10-19.	4.0	3
61	Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 2015, 51, 1414-1416.	2.2	33
62	Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 2015, 202, 124-132.	2.2	24
63	Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2014, 9, 2597.	3.3	26
64	A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control, 2014, 35, 166-176.	2.8	109
65	Chromoâ€Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 2014, 20, 855-866.	1.7	23
66	New multicomponent catalysts for the selective aerobic oxidative condensation of benzylamine to N-benzylidenebenzylamine. Catalysis Science and Technology, 2014, 4, 4340-4355.	2.1	21
67	Cathepsinâ€B Induced Controlled Release from Peptideâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2014, 20, 15309-15314.	1.7	50
68	Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chemical Communications, 2014, 50, 3184-3186.	2.2	58
69	Towards the Development of Smart 3D "Gated Scaffolds―for Onâ€Command Delivery. Small, 2014, 10, 4859-4864.	5.2	28
70	Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 12629-12633.	7.2	63
71	Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release. ACS Applied Materials & Date (1988) ACS APPLIED & DATE (4.0	31
72	Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: <i>Mycoplasma</i> Detection. Angewandte Chemie - International Edition, 2013, 52, 8938-8942.	7.2	51

#	Article	IF	CITATIONS
73	Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic–Inorganic Silica Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 13712-13716.	7.2	63
74	Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 2013, 1, 3561.	5.2	48
75	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	1.7	39
76	Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 2013, 19, 11167-11171.	1.7	31
77	Tetrathiafulvalene-Capped Hybrid Materials for the Optical Detection of Explosives. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1538-1543.	4.0	28
78	Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 2013, 49, 6391.	2.2	95
79	Organic–Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. ChemPlusChem, 2013, 78, 684-694.	1.3	15
80	An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 2013, 49, 5480.	2.2	89
81	A Simple Probe for the Colorimetric Detection of Carbon Dioxide. Chemistry - A European Journal, 2013, 19, 17301-17304.	1.7	22
82	Electronic sensors subject for students from degrees of chemistry and environment., 2012,,.		0
83	Experiences in involving students of final Degree courses in research projects as an alternative educational tool. , 2012, , .		0
84	Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 2012, 48, 5647.	2.2	91
85	Antibody apped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromoâ€Fluorogenic Detection of Finasteride. ChemistryOpen, 2012, 1, 251-259.	0.9	24
86	Low-cost materials for boron adsorption from water. Journal of Materials Chemistry, 2012, 22, 25362.	6.7	23
87	Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst, The, 2012, 137, 3635.	1.7	98
88	Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 2012, 28, 14766-14776.	1.6	43
89	Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 2012, 28, 2986-2996.	1.6	24
90	Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 10556-10560.	7.2	122

#	Article	IF	CITATIONS
91	A Photoactivated Molecular Gate. Chemistry - A European Journal, 2012, 18, 12218-12221.	1.7	35
92	Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 2012, 4, 7237.	2.8	39
93	Dual Enzymeâ€Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 2012, 1, 17-20.	0.9	59
94	Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 2012, 41, 1261-1296.	18.7	1,019
95	Sensing properties of silica nanoparticles functionalized with anion binding sites and sulforhodamine B as fluorogenic signalling unit. Inorganica Chimica Acta, 2012, 381, 188-194.	1.2	5
96	Selective and sensitive chromo-fluorogenic sensing of anionic surfactants in water using functionalised silica nanoparticles. Chemical Communications, 2011, 47, 6873.	2.2	25
97	Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 2011, 47, 11885.	2.2	19
98	Sensitive and Selective Chromogenic Sensing of Carbon Monoxide via Reversible Axial CO Coordination in Binuclear Rhodium Complexes. Journal of the American Chemical Society, 2011, 133, 15762-15772.	6.6	113
99	Enzymeâ€Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie - International Edition, 2011, 50, 2138-2140.	7.2	197
100	Finely Tuned Temperatureâ€Controlled Cargo Release Using Paraffinâ€Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 11172-11175.	7.2	143
101	Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 2011, 47, 8313.	2.2	40
102	Fatty Acid Carboxylate―and Anionic Surfactant ontrolled Delivery Systems That Use Mesoporous Silica Supports. Chemistry - A European Journal, 2010, 16, 10048-10061.	1.7	15
103	Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 5945-5948.	7.2	45
104	Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes. Angewandte Chemie - International Edition, 2010, 49, 4934-4937.	7.2	99
105	Controlled Delivery Using Oligonucleotide apped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 7281-7283.	7.2	234
106	A new approach for the selective and sensitive colorimetric detection of ionic surfactants in water. Journal of Materials Chemistry, 2010, 20, 1442-1451.	6.7	20
107	Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides†ACS Nano, 2010, 4, 6353-6368.	7.3	286
108	Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 2009, 15, 1816-1820.	1.7	44

#	Article	IF	CITATIONS
109	Borateâ€Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 2009, 15, 6877-6888.	1.7	78
110	Mesoporous Hybrid Materials Containing Nanoscopic "Binding Pockets―for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 2009, 15, 9024-9033.	1.7	42
111	Efficient Removal of Anionic Surfactants Using Mesoporous Functionalised Hybrid Materials. European Journal of Inorganic Chemistry, 2009, 2009, 3770-3777.	1.0	15
112	Enzymeâ€Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie - International Edition, 2009, 48, 5884-5887.	7.2	236
113	The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie - International Edition, 2009, 48, 8519-8522.	7.2	123
114	pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. Journal of the American Chemical Society, 2009, 131, 6833-6843.	6.6	367
115	Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 2009, 131, 14075-14080.	6.6	235
116	Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces. Dalton Transactions, 2009, , 4806.	1.6	21
117	A Mesoporous 3D Hybrid Material with Dual Functionality for Hg ²⁺ Detection and Adsorption. Chemistry - A European Journal, 2008, 14, 8267-8278.	1.7	123
118	A model for the assessment of interfering processes in Faradic electrodes. Sensors and Actuators A: Physical, 2008, 142, 56-60.	2.0	17
119	Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 2008, 131, 181-189.	4.8	101
120	Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, 2008, , 3639.	2.2	35
121	Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, 2008, , 6531.	2.2	28
122	Hybrid functionalised mesoporous silica–polymer composites for enhanced analyte monitoring using optical sensors. Journal of Materials Chemistry, 2008, 18, 5815.	6.7	42
123	Chromogenic silica nanoparticles for the colorimetric sensing of long-chain carboxylates. Chemical Communications, 2008, , 1668.	2.2	33
124	Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 2008, 130, 1903-1917.	6.6	220
125	Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chemical Communications, 2007, , 1957-1959.	2.2	80
126	Mesoporous silica materials with covalently anchored phenoxazinone dyes as fluorescent hybrid materials for vapour sensing. Journal of Materials Chemistry, 2007, 17, 4716.	6.7	50

#	Article	IF	CITATIONS
127	Nanosized Mesoporous Silica Coatings on Ceramic Foams:Â New Hierarchical Rigid Monoliths. Chemistry of Materials, 2007, 19, 1082-1088.	3.2	24
128	A Simple Approach for the Selective and Sensitive Colorimetric Detection of Anionic Surfactants in Water. Angewandte Chemie - International Edition, 2007, 46, 1675-1678.	7.2	106
129	Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chemical Communications, 2006, , 2239-2241.	2.2	72
130	Introduction of a model for describing the redox potential in faradic electrodes. Journal of Electroanalytical Chemistry, 2006, 594, 96-104.	1.9	13
131	Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity. Solid State Sciences, 2006, 8, 940-951.	1.5	47
132	Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 2006, 12, 2162-2170.	1.7	48
133	New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie - International Edition, 2006, 45, 6661-6664.	7.2	107
134	Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 2005, 127, 184-200.	6.6	253
135	Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie - International Edition, 2005, 44, 2918-2922.	7.2	88
136	A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg2+ Ions. Angewandte Chemie - International Edition, 2005, 44, 4405-4407.	7.2	351
137	N-Methyl,N-(propyl-3-trimethoxysilyl) Aniline (III), an Intermediate for Anchoring Dyes on Siliceous Supports ChemInform, 2005, 36, no.	0.1	0
138	Nâ€Methyl,Nâ€(propylâ€3â€ŧrimethoxysilyl) Aniline, an Intermediate for Anchoring Dyes on Siliceous Supports. Synthetic Communications, 2005, 35, 1511-1516.	1.1	2
139	Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP. Journal of Materials Chemistry, 2005, 15, 2721.	6.7	90
140	Enhanced manganese content in Mn-MCM-41 mesoporous silicas. European Physical Journal Special Topics, 2005, 123, 65-69.	0.2	0
141	Direct oxidation of isobutane to methacrolein over V-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 43-47.	2.2	23
142	One-Pot Synthesis of Superparamagnetic CoO-MCM-41 Nanocomposites with Uniform and Highly Dispersed Magnetic Nanoclusters. European Journal of Inorganic Chemistry, 2004, 2004, 1799-1803.	1.0	9
143	High Cobalt Content Mesoporous Silicas. Chemistry of Materials, 2004, 16, 2805-2813.	3.2	55
144	Efficient boron removal by using mesoporous matrices grafted with saccharides. Chemical Communications, 2004, , 2198-2199.	2.2	37

#	Article	IF	CITATIONS
145	Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. Journal of the American Chemical Society, 2004, 126, 8612-8613.	6.6	225
146	Surfactant-Assisted Synthesis of the SBA-8 Mesoporous Silica by Using Nonrigid Commercial Alkyltrimethyl Ammonium Surfactants. Chemistry of Materials, 2002, 14, 2637-2643.	3.2	35
147	Atrane Precursors in the One-Pot Surfactant-Assisted Synthesis of High Zirconium Content Porous Silicas. Chemistry of Materials, 2002, 14, 5015-5022.	3.2	58
148	A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41Electronic supplementary information (ESI) available: IR spectra, SEM images, X-ray diffraction patterns and TG/TD analysis. See http://www.rsc.org/suppdata/cc/b1/b111128k/. Chemical Communications, 2002, , 562-563.	2.2	80
149	Improving epoxide production using Ti-UVM-7 porous nanosized catalysts. New Journal of Chemistry, 2002, 26, 1093-1095.	1.4	26
150	Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, 2002, , 330-331.	2.2	152
151	Hierarchical Porous Nanosized Organosilicas. Chemistry of Materials, 2002, 14, 4502-4504.	3.2	42
152	A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Advanced Materials, 2002, 14, 966-969.	11.1	63
153	Ordered mesoporous materials: composition and topology control through chemistry. Solid State Sciences, 2001, 3, 1157-1163.	0.8	22
154	Very high titanium content mesoporous silicas. Chemical Communications, 2001, , 309-310.	2.2	43
155	Crystal structure of a new polytype in the V–P–O system: is ï‰-VOPO4 a dynamically stabilised metastable network?. Journal of Physics and Chemistry of Solids, 2001, 62, 1393-1399.	1.9	24
156	Ordered Mesoporous Silicon Oxynitrides. Advanced Materials, 2001, 13, 192-195.	11.1	66
157	Cu2+-cyclam complex functionalised with naphthylmethyl fluorescent signalling subunits as fluorescent chemosensors for sulfate in aqueous environment Inorganic Chemistry Communication, 2000, 3, 563-565.	1.8	8
158	A fluorescent chemosensor based on a ruthenium(II)-terpyridine core containing peripheral amino groups that selectively sense ATP in an aqueous environment. Inorganic Chemistry Communication, 2000, 3, 45-48.	1.8	32
159	Aza–oxa macrocyclic ligands functionalised with naphthylmethyl fluorescent groups. Polyhedron, 2000, 19, 1867-1872.	1.0	3
160	Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sciences, 2000, 2, 513-518.	1.5	97
161	Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2000, 2, 405-420.	1.5	208
162	Polyaza and azaoxa macrocyclic receptors functionalised with fluorescent subunits; Hg2+ selective signalling. Dalton Transactions RSC, 2000, , 1199-1205.	2.3	41

#	Article	IF	CITATIONS
163	Bis(terpyridyl)-Ruthenium(II) Units Attached to Polyazacycloalkanes as Sensing Fluorescent Receptors For Transition Metal Ions. European Journal of Inorganic Chemistry, 2000, 2000, 741-748.	1.0	1
164	Transition metal binding properties of the redox-active 1,4,7,10,13,16-hexa(ferrocenylmethyl)-1,4,7,10,13,16-hexaazacyclooctadecane and its electrochemical behaviour in a non-aqueous solvent. Polyhedron, 1999, 18, 3689-3694.	1.0	7
165	Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials, 1999, 11, 379-381.	11.1	241
166	Towards the Loewenstein limit (Si/Al=1) in thermally stable mesoporous aluminosilicates. Chemical Communications, 1999, , 1679-1680.	2.2	29
167	Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates. Chemical Communications, 1999, , 333-334.	2.2	30
168	Interface Charge Density Matching as Driving Force for New Mesostructured Oxovanadium Phosphates with Hexagonal Structure, [CTA]xVOPO4·zH2O. Chemistry of Materials, 1999, 11, 1446-1454.	3.2	55
169	Synthesis of a New Mesostructured Lamellar Oxovanadium Phosphate Assembled through an S+X-IO Mechanism. Inorganic Chemistry, 1999, 38, 4243-4248.	1.9	13
170	Prediction of Magnetic Properties in Oxovanadium(IV) Phosphates:Â The Role of the Bridging PO4Anions. Inorganic Chemistry, 1998, 37, 3167-3174.	1.9	46
171	Synthesis and Crystal Structure of a Novel Lamellar Barium Derivative: Ba(VOPO4)2·4H2O. Synthetic Pathways for Layered Oxovanadium Phosphate Hydrates M(VOPO4)2·nH2O. Inorganic Chemistry, 1997, 36, 3414-3421.	1.9	55
172	Synthetic Strategies To Obtain Vâ^'Pâ^'O Open Frameworks Containing Organic Species as Structural Directing Agents. Crystal Structure of the V(IV)â^'Fe(III) Bimetallic Phosphate [H3N(CH2)2NH3]2[H3N(CH2)2NH2][FeIII(H2O)2(VIVO)8(OH)4(HPO4)4(PO4)4]·4H2O. Inorganic Chemistry, 1996, 35, 5613-5621.	1.9	29
173	Synthetic Pathways for New Tubular Transition Metal Hydroxo- and Fluoro-Selenites: Crystal Structures ofM12(X)2(SeO3)8(OH)6(M=Co2+,Ni2+;X= OHâ^'). Journal of Solid State Chemistry, 1996, 126, 169-176.	1.4	17
174	Crystal structure of Tl0.5Pb0.5Sr2Ca2Cu3O9 at 300 K and around Tc (118 K). Physica C: Superconductivity and Its Applications, 1996, 270, 267-273.	0.6	12
175	behaviour and interaction with metal ions of new ligands obtained by condensation of ferrocenecarboxaldehyde with 2-amino-benzoic acid derivatives. Crystal structures of 2-ferrocenylmethylamino-5-methyl-benzoic acid and 2-bis(ferrocenylmethyl)ammonium-5-methyl-benzoic acid perchlorate. Inorganica Chimica Acta. 1995.	1.2	22
176	Non-stoichiometric tubular nickel(II) hydroxyarsenates of the dumortierite family: crystal structure and topochemical thermal reduction of Ni12+xH6–x(AsO4)8(OH)6(x= 1.16 and 1.33). Journal of Materials Chemistry, 1995, 5, 917-925.	6.7	12
177	A new functionalised oligopyridine ligand containing ferrocene as a ball-bearing spacer for metallosupramolecular chemistry. Inorganica Chimica Acta, 1994, 224, 11-14.	1.2	38
178	Powder diffraction studies of a 118 K Tl,Pb-1223 superconductor. Physica C: Superconductivity and Its Applications, 1994, 235-240, 967-968.	0.6	9
179	Quaternary uranium copper oxides: the structure and properties of UBa2CuO6. Journal of Materials Chemistry, 1994, 4, 475.	6.7	11
180	Topotactic Intercalation of Water and Pyridine into Co(H2PO2)2.cntdot.nH2O (0 .ltoreq. n .ltoreq.) Tj ETQq0 0 0 Inorganic Chemistry, 1994, 33, 1220-1226.	rgBT /Ove 1.9	erlock 10 Tf 50 7

Inorganic Chemistry, 1994, 33, 1220-1226.

#	Article	IF	CITATIONS
181	Synthesis and Crystal Structure of a Tubular Hydroxyphosphite: Zn11â-¡(HPO3)8(OH)6. Journal of Solid State Chemistry, 1993, 107, 250-257.	1.4	53
182	Precursor-based synthetic pathways to nanometer NdNiO3â^'x particles. Solid State Ionics, 1993, 63-65, 52-59.	1.3	5
183	New tubular transition metal oxoanionic derivatives: a systematic approach to condensed phases of the dumortierite family. Solid State Ionics, 1993, 63-65, 87-95.	1.3	7
184	Transition metal derivatives of low oxidation state phosphorus oxoacids: synthetic pathways and structural studies. Solid State Ionics, 1993, 63-65, 96-109.	1.3	7
185	Novel crystalline microporous transition-metal phosphites $M11(HPO3)8(OH)6$ (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives. Chemistry of Materials, 1993, 5, 121-128.	3.2	87
186	Ferrocene-containing chelating ligands. 1. Solution study, synthesis, crystal structure, and electronic properties of bis{N,N'-ethylenebis((ferrocenylmethyl)amine)}copper(II) nitrate. Inorganic Chemistry, 1993, 32, 1197-1203.	1.9	68
187	New lamellar oxophosphorus derivatives of nickel(II): x-ray powder diffraction structure determinations and magnetic studies of Ni(HPO3).H2O, NiCl(H2PO2).H2O, and NixCo1-x(HPO3).H2O solid solutions. Inorganic Chemistry, 1993, 32, 5044-5052.	1.9	25
188	Crystal structure and magnetic properties of α-Mn(H2PO2)2·H2O. Journal of Alloys and Compounds, 1992, 188, 133-137.	2.8	11
189	Spectroscopic studies and crystal structure of bis(N-2-pyridinylcarbonyl-2-pyridinecarboximidato) manganese(II) monohydrate: Zero-field splitting param. Polyhedron, 1990, 9, 2699-2704.	1.0	31
190	Crystal structure and magnetism of Co(HPO3)âH2O: A novel layered compound of Co(II). Journal of Applied Physics, 1990, 67, 5998-6000.	1.1	7
191	Crystal structure and spectroscopic studies of bis(N-2-pyridinylcarbonyl-2-pyridinecarboximidato)copper(II) monohydrate. Local bonding effects. Inorganica Chimica Acta, 1989, 159, 11-18.	1.2	47
192	α-VOSO4: a 2D-ferromagnet?. Solid State Communications, 1989, 70, 899-902.	0.9	10