Jamila S Alzahrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9952290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the radiation attenuation properties of MgO-Al2O3-SiO2-Li2O-Na2O glass system. Journal of the Australian Ceramic Society, 2022, 58, 267-273.	1.9	45
2	Effect of Calcination Temperature on the Structural and Optical Properties of (ZnO)0.8 (ZrO2)0.2 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1755-1765.	3.7	7
3	Enhanced α-Mn2O3 nanorods synthesized by one-pot hydrothermal route for supercapacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 11067-11077.	2.2	4
4	Synthesis and properties of tellurite based glasses containing Na2O, BaO, and TiO2: Raman, UV and neutron/charged particle shielding assessments. Ceramics International, 2022, 48, 18330-18337.	4.8	15
5	Evaluation of the radiation shielding characteristics of WO ₃ –MoO ₃ –TeO ₂ /Sb ₂ O ₃ glasses. Canadian Metallurgical Quarterly, 2022, 61, 418-428.	1.2	9
6	Optical and radiation shielding studies on tellurite glass system containing ZnO and Na2O. Optik, 2022, 257, 168821.	2.9	19
7	Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiation Physics and Chemistry, 2022, 195, 110090.	2.8	60
8	Synthesis, optical properties and radiation shielding performance of TeO2-Na2O-BaO-WO3 glass system. Optik, 2022, 261, 169167.	2.9	12
9	A synergistic effect of heavy metal oxides to enhance the physical, optical, and radiation-absorption properties of TeO2-Li2O-BaO glasses. Optik, 2022, 261, 169189.	2.9	16
10	A broad analysis of directly and indirectly ionizing radiation interaction parameters of PbF ₂ -CaF ₂ -Bi ₂ O ₃ -B ₂ O ₃ -Cr _{2< glass system. Physica Scripta, 2022, 97, 075306.}	< /as b>O<:	su2b>3
11	P2O5–Pb3O4–ZnO–Li2CO3–CuO glasses and their radiation attenuation properties for shielding applications. Journal of the Australian Ceramic Society, 2022, 58, 1219-1229.	1.9	3
12	Radiation shielding performance of Co2O3–TeO2–Li2O–ZrO2 glass–ceramics. Journal of the Australian Ceramic Society, 2022, 58, 1199-1207.	1.9	7
13	Geant4 Tracks of Nal Cubic Detector Peak Efficiency, Including Coincidence Summing Correction for Rectangular Sources. Nuclear Science and Engineering, 2021, 195, 1008-1016.	1.1	14
14	Fabrication and characterization of barium based bioactive glasses in terms of physical, structural, mechanical and radiation shielding properties. Ceramics International, 2021, 47, 21730-21743.	4.8	52
15	Role of heavy metal oxides on the radiation attenuation properties of newly developed TBBE-X glasses by computational methods. Physica Scripta, 2021, 96, 075302.	2.5	55
16	Ge20Se80-xBix (x â‰≇€‰12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. Journal of Materials Science: Materials in Electronics, 2021, 32, 15509-15522.	2.2	28
17	Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate glasses: a new nonâ€ŧoxic candidate for shielding applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 15080-15094.	2.2	11
18	Peak Efficiency of Nal Detector and Coincidence Summing Factor for Different Cylindrical Sources Using Geant4 Simulation. Health Physics, 2021, 121, 202-208.	0.5	0

#	Article	IF	CITATIONS
19	A Significant Role of Tb2O3 on the Optical Properties and Radiation Shielding Performance of Ga2O3–B2O3–Al2O3–GeO2 Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4300-4312.	3.7	8
20	Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study. Optical Materials, 2021, 117, 111173.	3.6	39
21	Physical, structural, mechanical, and radiation shielding properties of the PbO–B2O3–Bi2O3–ZnO glass system. Journal of Materials Science: Materials in Electronics, 2021, 32, 18994-19009.	2.2	23
22	Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability. Materials, 2021, 14, 4697.	2.9	24
23	Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Computational Materials Science, 2021, 196, 110566.	3.0	87
24	Gamma-Ray Attenuation and Exposure Buildup Factor of Novel Polymers in Shielding Using Geant4 Simulation. Materials, 2021, 14, 5051.	2.9	57
25	Developed barium fluoride-based borate glass: Ag2O impacts on optical and gamma-ray attenuation properties. Optik, 2021, 244, 167479.	2.9	3
26	Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. Journal of Alloys and Compounds, 2021, 882, 160625.	5.5	76
27	Nuclear shielding properties and buildup factors of Cr-based ferroalloys. Progress in Nuclear Energy, 2021, 141, 103956.	2.9	42
28	Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Progress in Nuclear Energy, 2021, 142, 103992.	2.9	79
29	Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO. Optik, 2021, 248, 168078.	2.9	18
30	Radiological monitoring in some coastal regions of the Saudi Arabian Gulf close to the Iranian Bushehr nuclear plant. Marine Pollution Bulletin, 2021, , 113146.	5.0	2
31	Conductive natural and waste rubbers composites-loaded with lead powder as environmental flexible gamma radiation shielding material. Materials Research Express, 2020, 7, 105309.	1.6	33