S Chris Reberg-Horton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States. Weed Technology, 2013, 27, 193-203.	0.9	168
2	Nitrogen Delivery from Legume Cover Crops in Noâ€Till Organic Corn Production. Agronomy Journal, 2011, 103, 1578-1590.	1.8	129
3	Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. Journal of Chemical Ecology, 2013, 39, 213-231.	1.8	112
4	CHANGES OVER TIME IN THE ALLELOCHEMICAL CONTENT OF TEN CULTIVARS OF RYE (Secale cereale L.). Journal of Chemical Ecology, 2005, 31, 179-193.	1.8	110
5	Rolled Rye Mulch for Weed Suppression in Organic No-Tillage Soybeans. Weed Science, 2011, 59, 224-231.	1.5	101
6	Soil Health Indicators Do Not Differentiate among Agronomic Management Systems in North Carolina Soils. Soil Science Society of America Journal, 2017, 81, 828-843.	2.2	98
7	Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renewable Agriculture and Food Systems, 2012, 27, 41-48.	1.8	91
8	Beneficial insects move from flowering plants to nearby crops. California Agriculture, 1998, 52, 23-26.	0.8	91
9	Cover Crop Effects on the Activity-Density of the Weed Seed Predator <i>Harpalus rufipes</i> (Coleoptera: Carabidae). Weed Science, 2008, 56, 442-450.	1.5	67
10	The Reduction of Plantâ€Available Nitrogen by Cover Crop Mulches and Subsequent Effects on Soybean Performance and Weed Interference. Agronomy Journal, 2013, 105, 539-545.	1.8	59
11	Hairy Vetch Biomass across the Eastern United States: Effects of Latitude, Seeding Rate and Date, and Termination Timing. Agronomy Journal, 2017, 109, 1510-1519.	1.8	50
12	Seeding Rate Effects on Weed Control and Yield For Organic Soybean Production. Weed Technology, 2009, 23, 497-502.	0.9	49
13	Legume Cover Crops and Tillage Impact Nitrogen Dynamics in Organic Corn Production. Agronomy Journal, 2018, 110, 1046-1057.	1.8	44
14	Crop and field border effects on weed seed predation in the southeastern U.S. coastal plain. Agriculture, Ecosystems and Environment, 2013, 177, 58-62.	5.3	34
15	Establishing the relationship of soil nitrogen immobilization to cereal rye residues in a mulched system. Plant and Soil, 2018, 426, 95-107.	3.7	34
16	Biological controls over the abundances of terrestrial ammonia oxidizers. Clobal Ecology and Biogeography, 2020, 29, 384-399.	5.8	34
17	Characterizing Cereal Rye Biomass and Allometric Relationships across a Range of Fall Available Nitrogen Rates in the Eastern United States. Agronomy Journal, 2017, 109, 1520-1531.	1.8	29
18	Shifts in the Composition and Activities of Denitrifiers Dominate CO ₂ Stimulation of N ₂ O Emissions. Environmental Science & Technology, 2019, 53, 11204-11213.	10.0	27

S CHRIS REBERG-HORTON

#	Article	IF	CITATIONS
19	Drought Stress Detection Using Low-Cost Computer Vision Systems and Machine Learning Techniques. IT Professional, 2020, 22, 27-29.	1.5	27
20	Cultural Strategies for Managing Weeds and Soil Moisture in Cover Crop Based No-Till Soybean Production. Weed Science, 2014, 62, 501-511.	1.5	26
21	CO2-induced alterations in plant nitrate utilization and root exudation stimulate N2O emissions. Soil Biology and Biochemistry, 2017, 106, 9-17.	8.8	26
22	Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biology and Fertility of Soils, 2021, 57, 485-498.	4.3	26
23	Roller-Crimper Termination for Legume Cover Crops in North Carolina: Impacts on Nutrient Availability to a Succeeding Corn Crop. Communications in Soil Science and Plant Analysis, 2014, 45, 1106-1119.	1.4	25
24	Weed suppression and soybean yield in a no-till cover-crop mulched system as influenced by six rye cultivars. Renewable Agriculture and Food Systems, 2016, 31, 429-440.	1.8	24
25	Small mammal use of field borders planted as beneficial insect habitat. Wildlife Society Bulletin, 2013, 37, 209-215.	1.6	23
26	Nearâ€infrared spectroscopic models for analysis of winter pea (<i>Pisum sativum</i> L.) quality constituents. Journal of the Science of Food and Agriculture, 2018, 98, 4253-4267.	3.5	23
27	Identifying Soybean Traits of Interest for Weed Competition. Crop Science, 2011, 51, 2642-2654.	1.8	21
28	A Comparison of Methods for Evaluating the Suppressive Ability of Winter Wheat Cultivars against Italian Ryegrass (Lolium perenne). Weed Science, 2013, 61, 491-499.	1.5	18
29	Pod Dehiscence in Hairy Vetch (Vicia villosa Roth). Frontiers in Plant Science, 2020, 11, 82.	3.6	18
30	Relative Contributions of Allelopathy and Competitive Traits to the Weed Suppressive Ability of Winter Wheat Lines Against Italian Ryegrass. Crop Science, 2015, 55, 57-64.	1.8	16
31	Starter Fertilizer for Managing Cover Crop-Based Organic Corn. Agronomy Journal, 2017, 109, 2214-2222.	1.8	16
32	Effects of Soybean Seed Size on Weed Competition. Agronomy Journal, 2011, 103, 175-181.	1.8	15
33	Row Spacing and Seeding Rate Effects on Canola Population, Weed Competition, and Yield in Winter Organic Canola Production. Agronomy Journal, 2016, 108, 2425-2432.	1.8	15
34	Planting Date Impacts on Soil Water Management, Plant Growth, and Weeds in Coverâ€Cropâ€Based Noâ€Till Corn Production. Agronomy Journal, 2016, 108, 162-170.	1.8	13
35	Winter Pea, Crimson Clover, and Hairy Vetch Planted in Mixture with Small Grains in the Southeast United States. Agronomy Journal, 2019, 111, 805-815.	1.8	13
36	Windows of action for controlling palmer amaranth (<i>Amaranthus palmeri</i>) using emergence and phenology models. Weed Research, 2021, 61, 188-198.	1.7	13

S CHRIS REBERG-HORTON

#	Article	IF	CITATIONS
37	Integrating emergence and phenology models to determine windows of action for weed control: A case study using Senna obtusifolia. Field Crops Research, 2020, 258, 107959.	5.1	13
38	Effects of Preplant and Postplant Rotary Hoe Use on Weed Control, Soybean Pod Position, and Soybean Yield. Weed Science, 2009, 57, 290-295.	1.5	12
39	Implications of Cereal Rye/Crimson Clover Management for Conventional and Organic Cotton Producers. Agronomy Journal, 2018, 110, 621-631.	1.8	12
40	Critical timing of Palmer amaranth (Amaranthus palmeri) removal in sweetpotato. Weed Technology, 2020, 34, 547-551.	0.9	12
41	Measuring community shifts in a weed seedbank study with the use of distance-based redundancy analysis. Weed Science, 2006, 54, 861-866.	1.5	11
42	Winter Grain-Short Season Corn Double Crop Forage Production for New England. Agronomy Journal, 2012, 104, 256-264.	1.8	11
43	Interaction of Cultivar, Planting Pattern, and Weed Management Tactics in Peanut. Weed Science, 2010, 58, 442-448.	1.5	10
44	Estimation of heritability of benzoxazinoid production in rye (<i>Secale cereale</i>) using gas chromatographic analysis. Plant Breeding, 2012, 131, 104-109.	1.9	10
45	Beneficial Insect Borders Provide Northern Bobwhite Brood Habitat. PLoS ONE, 2013, 8, e83815.	2.5	9
46	Morphological Traits Associated with Weedâ€Suppressive Ability of Winter Wheat against Italian Ryegrass. Crop Science, 2015, 55, 50-56.	1.8	8
47	In situ validation of fungal N translocation to cereal rye mulches under no-till soybean production. Plant and Soil, 2017, 410, 153-165.	3.7	8
48	Environmental Influences on the Relationship between Fall and Spring Vigor in Hairy Vetch. Crop Science, 2019, 59, 2443-2454.	1.8	8
49	Overwintering sparrow use of field borders planted as beneficial insect habitat. Journal of Wildlife Management, 2013, 77, 200-206.	1.8	7
50	Poultry Feather Meal Application in Organic Flue-Cured Tobacco Production. Agronomy Journal, 2017, 109, 2800-2807.	1.8	7
51	Tolerance of Sweetpotato to Herbicides Applied in Plant Propagation Beds. Weed Technology, 2019, 33, 147-152.	0.9	5
52	Legume cover crop type and termination method effects on labile soil carbon and nitrogen and aggregation. Agronomy Journal, 2022, 114, 1817-1832.	1.8	5
53	Screening Tactics for Identifying Competitive Soybean Genotypes. Communications in Soil Science and Plant Analysis, 2011, 42, 2654-2665.	1.4	4
54	Critical Period for Palmer Amaranth (<i>Amaranthus palmeri</i>) Control in Pickling Cucumber. Weed Technology, 2018, 32, 586-591.	0.9	4

S CHRIS REBERG-HORTON

#	Article	IF	CITATIONS
55	Soil carbon and nitrogen fractions after 19 years of farming systems research in the Coastal Plain of North Carolina. Soil Science Society of America Journal, 2020, 84, 856-876.	2.2	4
56	Differences among eighteen winter pea genotypes for forage and cover crop use in the southeastern United States. Crop Science, 2021, 61, 947-965.	1.8	4
57	Microbial processes and community structure as influenced by cover crop residue type and placement during repeated dry-wet cycles. Applied Soil Ecology, 2022, 172, 104349.	4.3	4
58	Effect of Soybean Maturity, Crimson Clover Seeding Method, and Seeding Rate on Clover Biomass and Nitrogen Content. Agronomy Journal, 2018, 110, 1829-1835.	1.8	3
59	Gatewayâ€node wireless data collection system for environmental sensing. , 2021, 4, .		3
60	Influence of Virginia Market Type Genotype on Peanut Response to Weed Interference. Peanut Science, 2012, 39, 22-29.	0.1	2
61	Winter Pea Cultivar/Breeding Line Screening for Grain Crop Potential in the Southeastern United States. Agronomy Journal, 2018, 110, 1217-1225.	1.8	2
62	Evaluation of Sweetpotato Cultivars with Varying Canopy Architectures in Conventional and a Reduced-tillage Rye Production System. HortTechnology, 2022, 32, 158-163.	0.9	2
63	Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content. Agronomy Journal, 2020, 112, 4898-4913.	1.8	1
64	Identifying interest, risks, and impressions of organic peanut production: A survey of conventional farmers in the Virginia–Carolina region. Crop, Forage and Turfgrass Management, 2020, 6, e20042.	0.6	0