Pekka E Marttinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/994898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 494-514.	11.3	769
2	Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 2008, 9, 539.	2.6	760
3	Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology, 2006, 15, 2833-2843.	3.9	569
4	Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild <i>Prochlorococcus</i> . Science, 2014, 344, 416-420.	12.6	506
5	BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics, 2004, 20, 2363-2369.	4.1	415
6	Dense genomic sampling identifies highways of pneumococcal recombination. Nature Genetics, 2014, 46, 305-309.	21.4	371
7	Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes. PLoS Genetics, 2014, 10, e1004547.	3.5	205
8	Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nature Communications, 2016, 7, 12797.	12.8	190
9	Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Research, 2012, 40, e6-e6.	14.5	179
10	Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations. Molecular Biology and Evolution, 2017, 34, 1167-1182.	8.9	168
11	International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine, 2019, 43, 338-346.	6.1	168
12	metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016, 32, 1981-1989.	4.1	138
13	Cryptic ecology among host generalist <i>Campylobacter jejuni</i> in domestic animals. Molecular Ecology, 2014, 23, 2442-2451.	3.9	131
14	Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biology, 2012, 13, R126.	9.6	118
15	Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications, 2016, 7, 12460.	12.8	73
16	Deep learning for depression recognition with audiovisual cues: A review. Information Fusion, 2022, 80, 56-86.	19.1	73
17	EEG Based Emotion Recognition: A Tutorial and Review. ACM Computing Surveys, 2023, 55, 1-57.	23.0	58
18	Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genetics, 2017, 13, e1006855.	3.5	41

2

Pekka E Marttinen

#	Article	IF	CITATIONS
19	Bayesian search of functionally divergent protein subgroups and their function specific residues. Bioinformatics, 2006, 22, 2466-2474.	4.1	40
20	Modelling G×E with historical weather information improves genomic prediction in new environments. Bioinformatics, 2019, 35, 4045-4052.	4.1	40
21	Reconstructing Population Histories from Single Nucleotide Polymorphism Data. Molecular Biology and Evolution, 2011, 28, 673-683.	8.9	37
22	Recombination produces coherent bacterial species clusters in both core and accessory genomes. Microbial Genomics, 2015, 1, e000038.	2.0	37
23	Robust extraction of functional signals from gene set analysis using a generalized threshold free scoring function. BMC Bioinformatics, 2009, 10, 307.	2.6	35
24	Does the magic of BERT apply to medical code assignment? A quantitative study. Computers in Biology and Medicine, 2021, 139, 104998.	7.0	32
25	Assessing multivariate gene-metabolome associations with rare variants using Bayesian reduced rank regression. Bioinformatics, 2014, 30, 2026-2034.	4.1	28
26	Bayesian modeling of recombination events in bacterial populations. BMC Bioinformatics, 2008, 9, 421.	2.6	26
27	Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation. Bayesian Analysis, 2019, 14, .	3.0	24
28	Speciation trajectories in recombining bacterial species. PLoS Computational Biology, 2017, 13, e1005640.	3.2	24
29	Gaussian process modelling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria. Annals of Applied Statistics, 2018, 12, .	1.1	22
30	Cluster analysis to estimate the risk of preeclampsia in the high-risk Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study. PLoS ONE, 2017, 12, e0174399.	2.5	21
31	Bayesian clustering and feature selection for cancer tissue samples. BMC Bioinformatics, 2009, 10, 90.	2.6	13
32	Genome-wide association studies with high-dimensional phenotypes. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 413-31.	0.6	13
33	The impact of host metapopulation structure on the population genetics of colonizing bacteria. Journal of Theoretical Biology, 2016, 396, 53-62.	1.7	13
34	Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis. PLoS ONE, 2012, 7, e49445.	2.5	12
35	Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets. , 2017, , .		12
36	biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements. Bioinformatics, 2017, 33, 2405-2407.	4.1	11

Pekka E Marttinen

#	Article	IF	CITATIONS
37	Bacmeta: simulator for genomic evolution in bacterial metapopulations. Bioinformatics, 2018, 34, 2308-2310.	4.1	11
38	Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data. PLoS ONE, 2012, 7, e29115.	2.5	11
39	Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing. Nature Communications, 2021, 12, 7165.	12.8	11
40	Serum and <scp>CSF</scp> soluble <scp>CD26</scp> and <scp>CD30</scp> concentrations inÂhealthy pediatric surgical outpatients. Tissue Antigens, 2012, 80, 368-375.	1.0	10
41	Dilated Convolutional Attention Network for Medical Code Assignment from Clinical Text. , 2020, , .		10
42	Bayesian Clustering of Fuzzy Feature Vectors Using a Quasi-Likelihood Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 74-85.	13.9	8
43	Plant Sterol Feeding Induces Tumor Formation and Alters Sterol Metabolism in the Intestine of <i>Apc</i> ^{Min} Mice. Nutrition and Cancer, 2014, 66, 259-269.	2.0	8
44	Substitutions of short heterologous DNA segments of intragenomic or extragenomic origins produce clustered genomic polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15066-15071.	7.1	8
45	A Bayesian model of acquisition and clearance of bacterial colonization incorporating within-host variation. PLoS Computational Biology, 2019, 15, e1006534.	3.2	7
46	Efficient Bayesian approach for multilocus association mapping including gene-gene interactions. BMC Bioinformatics, 2010, 11, 443.	2.6	6
47	Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge. Bioinformatics, 2018, 34, i395-i403.	4.1	6
48	Multitask Recalibrated Aggregation Network for Medical Code Prediction. Lecture Notes in Computer Science, 2021, , 367-383.	1.3	6
49	Bayesian learning of graphical vector autoregressions with unequal lag-lengths. Machine Learning, 2009, 75, 217-243.	5.4	5
50	Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass. Annals of Medicine, 2021, 53, 1885-1895.	3.8	5
51	Modelling methicillin-resistant <i>Staphylococcus aureus</i> decolonization: interactions between body sites and the impact of site-specific clearance. Journal of the Royal Society Interface, 2022, 19, .	3.4	4
52	Errors-in-Variables Modeling of Personalized Treatment-Response Trajectories. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 201-208.	6.3	3
53	COVIDNet: An Automatic Architecture for COVID-19 Detection With Deep Learning From Chest X-Ray Images. IEEE Internet of Things Journal, 2022, 9, 11376-11384.	8.7	3
54	Bayesian Model Learning Based on Predictive Entropy. Journal of Logic, Language and Information, 2006, 15, 5-20.	0.6	2

#	Article	IF	CITATIONS
55	Crop loss identification at field parcel scale using satellite remote sensing and machine learning. PLoS ONE, 2021, 16, e0251952.	2.5	1