Thomas P Peacock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/994174/publications.pdf

Version: 2024-02-01

31 papers

2,874 citations

³⁹⁴⁴²¹ 19 h-index 30 g-index

58 all docs 58 docs citations

58 times ranked 4107 citing authors

#	Article	IF	CITATIONS
1	Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Reports, 2022, 38, 110344.	6.4	46
2	Tracking SARS-CoV-2 Mutations & Samp; Variants Through the COG-UK-Mutation Explorer. Virus Evolution, 2022, 8, veac023.	4.9	19
3	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	6.1	23
4	A self-amplifying RNA vaccine protects against SARS-CoV-2 (D614G) and Alpha variant of concern (B.1.1.7) in a transmission-challenge hamster model. Vaccine, 2022, 40, 2848-2855.	3.8	7
5	SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges. Journal of General Virology, 2022, 103, .	2.9	19
6	Where is the next SARS-CoV-2 variant of concern?. Lancet, The, 2022, 399, 1938-1939.	13.7	16
7	An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.	30.7	47
8	Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nature Medicine, 2022, 28, 1785-1790.	30.7	456
9	Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nature Microbiology, 2022, 7, 1180-1188.	13.3	39
10	Genetic Determinants of Receptor-Binding Preference and Zoonotic Potential of H9N2 Avian Influenza Viruses. Journal of Virology, 2021, 95, .	3.4	14
11	PA-X is an avian virulence factor in H9N2 avian influenza virus. Journal of General Virology, 2021, 102, .	2.9	5
12	The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 2021, 6, 899-909.	13.3	556
13	SARS-CoV-2 one year on: evidence for ongoing viral adaptation. Journal of General Virology, 2021, 102, .	2.9	137
14	A natural variant in ANP32B impairs influenza virus replication in human cells. Journal of General Virology, 2021, 102, .	2.9	8
15	Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathogens, 2021, 17, e1010022.	4.7	139
16	Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. Journal of Virology, 2020, 94, .	3.4	15
17	Adsorptive mutation and N-linked glycosylation modulate influenza virus antigenicity and fitness. Emerging Microbes and Infections, 2020, 9, 2622-2631.	6.5	7
18	ACE2: The Only Thing That Matters?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 161-163.	5.6	4

#	Article	IF	CITATION
19	Swine ANP32A Supports Avian Influenza Virus Polymerase. Journal of Virology, 2020, 94, .	3.4	26
20	Disrupting <scp>HIV</scp> â€1 capsid formation causes <scp>cGAS</scp> sensing of viral DNA. EMBO Journal, 2020, 39, e103958.	7.8	53
21	Host Determinants of Influenza RNA Synthesis. Annual Review of Virology, 2019, 6, 215-233.	6.7	39
22	ANP32 Proteins Are Essential for Influenza Virus Replication in Human Cells. Journal of Virology, 2019, 93, .	3.4	68
23	The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	24
24	Association of Increased Receptor-Binding Avidity of Influenza A(H9N2) Viruses with Escape from Antibody-Based Immunity and Enhanced Zoonotic Potential. Emerging Infectious Diseases, 2018, 25, 63-72.	4.3	36
25	Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness <i>In Vivo</i> and Display Enhanced Zoonotic Characteristics. Journal of Virology, 2017, 91, .	3.4	41
26	Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	46
27	Affimer proteins are versatile and renewable affinity reagents. ELife, 2017, 6, .	6.0	151
28	Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Scientific Reports, 2016, 6, 18745.	3.3	51
29	Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infection, Genetics and Evolution, 2016, 44, 530-540.	2.3	44
30	Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Frontiers in Cellular and Infection Microbiology, 2015, 5, 88.	3.9	29
31	A Common <i>TMPRSS2</i> Variant Protects Against Severe COVID-19. SSRN Electronic Journal, 0, , .	0.4	2