
Daphna Shohamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9941009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restrictive eating across a spectrum from healthy to unhealthy: behavioral and neural mechanisms. Psychological Medicine, 2022, 52, 1755-1764.	4.5	27
2	Neural Representations of Food-Related Attributes in the Human Orbitofrontal Cortex during Choice Deliberation in Anorexia Nervosa. Journal of Neuroscience, 2022, 42, 109-120.	3.6	5
3	Preserved motor memory in Parkinson's disease. Neuropsychologia, 2022, 167, 108161.	1.6	7
4	An energizing role for motivation in information-seeking during the early phase of the COVID-19 pandemic. Nature Communications, 2022, 13, 2310.	12.8	9
5	Deficient Goal-Directed Control in a Population Characterized by Extreme Goal Pursuit. Journal of Cognitive Neuroscience, 2021, 33, 463-481.	2.3	25
6	Changes in brain and behavior during food-based decision-making following treatment of anorexia nervosa. Journal of Eating Disorders, 2021, 9, 48.	2.7	10
7	Memory and decision making interact to shape the value of unchosen options. Nature Communications, 2021, 12, 4648.	12.8	18
8	Memory for individual items is related to nonreinforced preference change. Learning and Memory, 2021, 28, 348-360.	1.3	6
9	Curiosity as the impulse to know: common behavioral and neural mechanisms underlying curiosity and impulsivity. Current Opinion in Behavioral Sciences, 2020, 35, 92-98.	3.9	22
10	An objective evaluation of the beholder's response to abstract and figurative art based on construal level theory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19809-19815.	7.1	10
11	Dopamine is associated with prioritization of reward-associated memories in Parkinson's disease. Brain, 2020, 143, 2519-2531.	7.6	10
12	A comparison of foodâ€based decisionâ€making between restricting and bingeâ€eating/purging subtypes of anorexia nervosa. International Journal of Eating Disorders, 2020, 53, 1751-1756.	4.0	11
13	What Are Memories For? The Hippocampus Bridges Past Experience with Future Decisions. Trends in Cognitive Sciences, 2020, 24, 542-556.	7.8	67
14	Effects of perceptual and categorical novelty on construal level. Journal of Vision, 2020, 20, 1700.	0.3	0
15	Modulating the Use of Multiple Memory Systems in Value-based Decisions with Contextual Novelty. Journal of Cognitive Neuroscience, 2019, 31, 1455-1467.	2.3	18
16	Hippocampal Contributions to Model-Based Planning and Spatial Memory. Neuron, 2019, 102, 683-693.e4.	8.1	119
17	Impaired generalization of reward but not loss in obsessive-compulsive disorder. Depression and Anxiety, 2019, 36, 121-129.	4.1	17
18	The hippocampus supports deliberation during value-based decisions. ELife, 2019, 8, .	6.0	82

#	Article	IF	CITATIONS
19	Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences, 2018, 22, 365-367.	7.8	22
20	More Than the Sum of Its Parts: A Role for the Hippocampus in Configural Reinforcement Learning. Neuron, 2018, 98, 645-657.e6.	8.1	49
21	Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning. Journal of Neuroscience, 2018, 38, 2442-2453.	3.6	82
22	Assessment of test-retest reliability of a food choice task among healthy individuals. Appetite, 2018, 123, 352-356.	3.7	22
23	Retroactive and graded prioritization of memory by reward. Nature Communications, 2018, 9, 4886.	12.8	56
24	Reevaluating revaluation: evidence for value construction during decision making. , 2018, , .		0
25	Reminders of past choices bias decisions for reward in humans. Nature Communications, 2017, 8, 15958.	12.8	155
26	Memory states influence value-based decisions Journal of Experimental Psychology: General, 2016, 145, 1420-1426.	2.1	57
27	Motivational Context Modulates Prediction Error Response in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1467-1475.	4.3	37
28	Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference. Journal of Cognitive Neuroscience, 2016, 28, 1270-1282.	2.3	37
29	An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence. Neuron, 2016, 92, 93-99.	8.1	181
30	Decision Making and Sequential Sampling from Memory. Neuron, 2016, 90, 927-939.	8.1	286
31	Dopamine Modulation of Intertemporal Decision-making: Evidence from Parkinson Disease. Journal of Cognitive Neuroscience, 2016, 28, 657-667.	2.3	25
32	Mechanisms of Working Memory Impairment in Schizophrenia. Biological Psychiatry, 2016, 80, 617-626.	1.3	96
33	Dopamine selectively remediates â€~model-based' reward learning: a computational approach. Brain, 2016, 139, 355-364.	7.6	111
34	Curiosity and reward: Valence predicts choice and information prediction errors enhance learning Journal of Experimental Psychology: General, 2016, 145, 266-272.	2.1	146
35	Dynamic shifts in brain network activation during supracapacity working memory task performance. Human Brain Mapping, 2015, 36, 1245-1264.	3.6	40
36	Restrictive food intake as a choice—A paradigm for study. International Journal of Eating Disorders, 2015, 48, 59-66.	4.0	56

#	Article	IF	CITATIONS
37	Motivational modes and learning in Parkinson's disease. Social Cognitive and Affective Neuroscience, 2015, 10, 1066-1073.	3.0	8
38	Model-based choices involve prospective neural activity. Nature Neuroscience, 2015, 18, 767-772.	14.8	225
39	Neural mechanisms supporting maladaptive food choices in anorexia nervosa. Nature Neuroscience, 2015, 18, 1571-1573.	14.8	158
40	Integrating memories to guide decisions. Current Opinion in Behavioral Sciences, 2015, 5, 85-90.	3.9	97
41	Multiple memory systems as substrates for multiple decision systems. Neurobiology of Learning and Memory, 2015, 117, 4-13.	1.9	78
42	Thanks for the Memories $\tilde{A}^{c}\hat{a},\neg\hat{A}^{\dagger}_{1}.$ Frontiers for Young Minds, 2014, 2, .	0.8	2
43	Transfer of Learning Relates to Intrinsic Connectivity between Hippocampus, Ventromedial Prefrontal Cortex, and Large-Scale Networks. Journal of Neuroscience, 2014, 34, 11297-11303.	3.6	73
44	Patients with schizophrenia are impaired when learning in the context of pursuing rewards. Schizophrenia Research, 2014, 152, 309-310.	2.0	21
45	Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors. Journal of Neuroscience, 2014, 34, 14901-14912.	3.6	109
46	Mind matters: placebo enhances reward learning in Parkinson's disease. Nature Neuroscience, 2014, 17, 1793-1797.	14.8	61
47	Representation of aversive prediction errors in the human periaqueductal gray. Nature Neuroscience, 2014, 17, 1607-1612.	14.8	208
48	Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus, 2013, 23, 187-192.	1.9	115
49	Dopamine and the cost of aging. Nature Neuroscience, 2013, 16, 519-521.	14.8	10
50	A Trade-Off between Feedback-Based Learning and Episodic Memory for Feedback Events: Evidence from Parkinson's Disease. Neurodegenerative Diseases, 2013, 11, 93-101.	1.4	35
51	Mechanisms for widespread hippocampal involvement in cognition Journal of Experimental Psychology: General, 2013, 142, 1159-1170.	2.1	160
52	A Role for the Medial Temporal Lobe in Feedback-Driven Learning: Evidence from Amnesia. Journal of Neuroscience, 2013, 33, 5698-5704.	3.6	90
53	Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 2012, 16, 147-156.	7.8	705
54	Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions. Science, 2012, 338, 270-273.	12.6	416

#	Article	IF	CITATIONS
55	Memory generalization is selectively altered in the psychosis dimension. Schizophrenia Research, 2012, 138, 74-80.	2.0	12
56	Generalization of value in reinforcement learning by humans. European Journal of Neuroscience, 2012, 35, 1092-1104.	2.6	100
57	The role of the basal ganglia in learning and memory: Insight from Parkinson's disease. Neurobiology of Learning and Memory, 2011, 96, 624-636.	1.9	144
58	Learning and motivation in the human striatum. Current Opinion in Neurobiology, 2011, 21, 408-414.	4.2	69
59	Cooperation between the Hippocampus and the Striatum during Episodic Encoding. Journal of Cognitive Neuroscience, 2011, 23, 1597-1608.	2.3	85
60	Feedback Timing Modulates Brain Systems for Learning in Humans. Journal of Neuroscience, 2011, 31, 13157-13167.	3.6	151
61	The striatum and beyond: contributions of the hippocampus to decision making. , 2011, , 281-310.		7
62	Neural circuits can bridge systems and cognitive neuroscience. Frontiers in Human Neuroscience, 2010, 3, 81.	2.0	5
63	Learning and Generalization in Schizophrenia: Effects of Disease and Antipsychotic Drug Treatment. Biological Psychiatry, 2010, 67, 926-932.	1.3	30
64	Dopamine and adaptive memory. Trends in Cognitive Sciences, 2010, 14, 464-472.	7.8	551
65	Sleep enhances category learning. Learning and Memory, 2009, 16, 751-755.	1.3	91
66	Integrative Encoding. American Journal of Psychiatry, 2009, 166, 284-284.	7.2	2
67	Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal. Journal of Cognitive Neuroscience, 2009, 21, 1820-1832.	2.3	61
68	Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 2008, 32, 219-236.	6.1	192
69	Integrating Memories in the Human Brain: Hippocampal-Midbrain Encoding of Overlapping Events. Neuron, 2008, 60, 378-389.	8.1	427
70	Stimulus–response learning in long-term cocaine users: Acquired equivalence and probabilistic category learning. Drug and Alcohol Dependence, 2008, 93, 155-162.	3.2	22
71	The Cognitive Neuroscience of Motivation and Learning. Social Cognition, 2008, 26, 593-620.	0.9	79
72	Cognitive sequence learning in Parkinson's disease and amnestic mild cognitive impairment: Dissociation between sequential and non-sequential learning of associations. Neuropsychologia, 2007, 45, 1386-1392.	1.6	33

#	Article	IF	CITATIONS
73	l-dopa impairs learning, but spares generalization, in Parkinson's disease. Neuropsychologia, 2006, 44, 774-784.	1.6	135
74	Strategies in probabilistic categorization: Results from a new way of analyzing performance. Learning and Memory, 2006, 13, 230-239.	1.3	58
75	Hippocampal function, declarative memory, and schizophrenia: Anatomic and functional neuroimaging considerations. Current Neurology and Neuroscience Reports, 2005, 5, 249-256.	4.2	42
76	The role of dopamine in cognitive sequence learning: evidence from Parkinson's disease. Behavioural Brain Research, 2005, 156, 191-199.	2.2	99
77	Impaired probabilistic category learning in hypoxic subjects with hippocampal damage. Neuropsychologia, 2004, 42, 524-535.	1.6	94
78	Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain, 2004, 127, 851-859.	7.6	308
79	Role of the Basal Ganglia in Category Learning: How Do Patients With Parkinson's Disease Learn?. Behavioral Neuroscience, 2004, 118, 676-686.	1.2	158
80	Human Midbrain Sensitivity to Cognitive Feedback and Uncertainty During Classification Learning. Journal of Neurophysiology, 2004, 92, 1144-1152.	1.8	248
81	Dissociating medial temporal and basal ganglia memory systems with a latent learning task. Neuropsychologia, 2003, 41, 1919-1928.	1.6	36
82	Dissociating Hippocampal versus Basal Ganglia Contributions to Learning and Transfer. Journal of Cognitive Neuroscience, 2003, 15, 185-193.	2.3	184
83	How do People Solve the "Weather Prediction―Task?: Individual Variability in Strategies for Probabilistic Category Learning. Learning and Memory, 2002, 9, 408-418.	1.3	213
84	Interactive memory systems in the human brain. Nature, 2001, 414, 546-550.	27.8	1,024
85	Dissociating entorhinal and hippocampal involvement in latent inhibition Behavioral Neuroscience, 2000, 114, 867-874.	1.2	67
86	Time Travel in the Brain. Frontiers for Young Minds, 0, 7, .	0.8	0