
John Chiefari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9935773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Living Free-Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer:Â The RAFT Process. Macromolecules, 1998, 31, 5559-5562.	2.2	4,672

 $_{2}$ Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 J = 1.6 J = 1.6

3	Thiocarbonylthio Compounds (SC(Z)Sâ^'R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36, 2273-2283.	2.2	587
4	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0 0 rgBT 6977-6980.	/Overlock 2.2	10 Tf 50 62 519
5	Living Polymers by the Use of Trithiocarbonates as Reversible Additionâ``Fragmentation Chain Transfer (RAFT) Agents:Â ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.	2.2	446
6	Universal (Switchable) RAFT Agents. Journal of the American Chemical Society, 2009, 131, 6914-6915.	6.6	271
7	Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process. ACS Symposium Series, 2000, , 278-296.	0.5	175
8	Chain Transfer to Polymer:Â A Convenient Route to Macromonomers. Macromolecules, 1999, 32, 7700-7702.	2.2	163
9	Tailored polymers by free radical processes. Macromolecular Symposia, 1999, 143, 291-307.	0.4	136
10	Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA- <i>b</i> -DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles. Macromolecules, 2012, 45, 9292-9302.	2.2	129
11	Controlled RAFT Polymerization in a Continuous Flow Microreactor. Organic Process Research and Development, 2011, 15, 593-601.	1.3	123
12	Models for the Pigment Organization in the Chlorosomes of Photosynthetic Bacteria: Diastereoselective Control of in-vitro Bacteriochlorophyll cs Aggregation. The Journal of Physical Chemistry, 1995, 99, 1357-1365.	2.9	112
13	Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromolecular Symposia, 2001, 174, 209-212.	0.4	82
14	Acidâ^'Amide Intermolecular Hydrogen Bonding. Journal of the American Chemical Society, 1997, 119, 3802-3806.	6.6	77
15	Initiating free radical polymerization. Macromolecular Symposia, 2002, 182, 65-80.	0.4	77
16	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	2.2	52
17	Automated Parallel Freeze–Evacuate–Thaw Degassing Method for Oxygen-Sensitive Reactions: RAFT Polymerization. ACS Combinatorial Science, 2012, 14, 389-394.	3.8	48
18	Quasi-block copolymer libraries on demand via sequential RAFT polymerization in an automated parallel synthesizer. Polymer Chemistry, 2013, 4, 1857.	1.9	45

JOHN CHIEFARI

#	Article	IF	CITATIONS
19	Synthesis of RAFT Block Copolymers in a Multi-Stage Continuous Flow Process Inside a Tubular Reactor. Australian Journal of Chemistry, 2013, 66, 192.	0.5	41
20	Continuous Flow Aminolysis of RAFT Polymers Using Multistep Processing and Inline Analysis. Macromolecules, 2014, 47, 8203-8213.	2.2	35
21	A Continuous Flow Process for the Radical Induced End Group Removal of RAFT Polymers. Macromolecular Reaction Engineering, 2012, 6, 246-251.	0.9	33
22	Binary Copolymerization with Catalytic Chain Transfer. A Method for Synthesizing Macromonomers Based on Monosubstituted Monomers. Macromolecules, 2005, 38, 9037-9054.	2.2	32
23	Enabling High Lithium Conductivity in Polymerized Ionic Liquid Block Copolymer Electrolytes. Batteries and Supercaps, 2019, 2, 132-138.	2.4	28
24	Water as Solvent in Polyimide Synthesis: Thermoset and Thermoplastic Examples. High Performance Polymers, 2003, 15, 269-279.	0.8	26
25	Sequential flow process for the controlled polymerisation and thermolysis of RAFT-synthesised polymers. Polymer, 2014, 55, 1427-1435.	1.8	26
26	Block Copolymer Synthesis through the Use of Switchable RAFT Agents. ACS Symposium Series, 2011, , 81-102.	0.5	24
27	Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry. Polymers, 2021, 13, 4127.	2.0	23
28	Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 070525.	1.3	22
29	Water as Solvent in Polyimide Synthesis II: Processable Aromatic Polyimides. High Performance Polymers, 2006, 18, 31-44.	0.8	18
30	Preparation of Forced Gradient Copolymers Using Tubeâ€inâ€Tube Continuous Flow Reactors. Macromolecular Reaction Engineering, 2017, 11, 1600065.	0.9	15
31	Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. Journal of Controlled Release, 2021, 329, 257-269.	4.8	11
32	Decarboxylation of phthalidecarboxylic acids in the presence of imines - a facile route to isoindolo[1,2-b][3]benzazepin-5-ones and phthalideisoquinolines. Tetrahedron Letters, 1986, 27, 6119-6122.	0.7	10
33	Water as Solvent in Polyimide Synthesis III: Towards the Synthesis of Polyamideimides. High Performance Polymers, 2006, 18, 437-451.	0.8	9
34	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
35	Effective macrophage delivery using RAFT copolymer derived nanoparticles. Polymer Chemistry, 2018, 9, 131-137.	1.9	9
36	Synthesis and conformation of a bilirubin analog with propionic acid side chains extended to undecanoic acid. Tetrahedron, 1992, 48, 5969-5984.	1.0	7

JOHN CHIEFARI

#	Article	IF	CITATIONS
37	Poly(HPMA-co-NIPAM) copolymer as an alternative to polyethylene glycol-based pharmacokinetic modulation of therapeutic proteins. International Journal of Pharmaceutics, 2021, 608, 121075.	2.6	7
38	Glycosylated Nanoparticles Derived from RAFT Polymerization for Effective Drug Delivery to Macrophages. ACS Applied Bio Materials, 2020, 3, 5775-5786.	2.3	6
39	Mobile hydrogen reformers as a novel approach to decarbonise the transport sector. Current Opinion in Chemical Engineering, 2021, 34, 100756.	3.8	6
40	Controlled Synthesis of Multifunctional Polymers by RAFT for Personal Care Applications. ACS Symposium Series, 2013, , 157-172.	0.5	4
41	Preparation of Protein–Polymer Conjugates: Copolymerisation by RAFT. Australian Journal of Chemistry, 2020, , .	0.5	3
42	Water as solvent in polyimide synthesis. , 2005, , 3-13.		3
43	Models for the Pigment Organization in the Chlorosomes of Photosynthetic Bacteria: Diastereoselective Control of in-Vitro Bacteriochlorophyll cs Aggregation. [Erratum to document cited in CA122:76986]. The Journal of Physical Chemistry, 1995, 99, 16194-16194.	2.9	2
44	Synthesis of an Electrophilic Polymer by Ring-Opening Metathesis Polymerization. Australian Journal of Chemistry, 2002, 55, 245.	0.5	1
45	Arming Immune Cell Therapeutics with Polymeric Prodrugs. Advanced Healthcare Materials, 2021, , 2101944.	3.9	1
46	Polymer Syntheses, Vol. 3, 2nd Edition. By Stanley R. Sandler. Molecules, 1998, 3, 48-48.	1.7	0
47	Protecting keratin fiber with water soluble N-substituted maleimides in high temperature processes. Fibers and Polymers, 2014, 15, 2247-2252.	1.1	Ο