
Brendan D Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ZEB2â€dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes <i>ERCC1</i> and <i>ERCC4</i> in colorectal cancer. Molecular Oncology, 2021, 15, 2065-2083.	4.6	18
2	HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells. Cancer Gene Therapy, 2020, 27, 319-329.	4.6	20
3	Polymerase l´ promotes chromosomal rearrangements and imprecise double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27566-27577.	7.1	15
4	Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage. PLoS ONE, 2020, 15, e0237759.	2.5	4
5	Title is missing!. , 2020, 15, e0237759.		0
6	Title is missing!. , 2020, 15, e0237759.		0
7	Title is missing!. , 2020, 15, e0237759.		0
8	Title is missing!. , 2020, 15, e0237759.		0
9	Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Trends in Genetics, 2019, 35, 159-172.	6.7	26
10	Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Research, 2018, 46, 3891-3905.	14.5	31
11	PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nature Communications, 2017, 8, 15110.	12.8	32
12	KDM5A demethylase: Erasing histone modifications to promote repair of DNA breaks. Journal of Cell Biology, 2017, 216, 1871-1873.	5.2	8
13	Spatially restricted loading of BRD2 at DNA double-strand breaks protects H4 acetylation domains and promotes DNA repair. Scientific Reports, 2017, 7, 12921.	3.3	27
14	The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160284.	4.0	91
15	Ape1 guides DNA repair pathway choice that is associated with drug tolerance in glioblastoma. Scientific Reports, 2017, 7, 9674.	3.3	27
16	Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget, 2017, 8, 24518-24532.	1.8	41
17	Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. Journal of Molecular Biology, 2016, 428, 1846-1860.	4.2	90
18	Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7507-7512.	7.1	114

BRENDAN D PRICE

#	Article	IF	CITATIONS
19	Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair. Biochemical and Biophysical Research Communications, 2014, 452, 1034-1039.	2.1	6
20	DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9169-9174.	7.1	303
21	Chromatin Remodeling at DNA Double-Strand Breaks. Cell, 2013, 152, 1344-1354.	28.9	485
22	FANCD2 Activates Transcription of TAp63 and Suppresses Tumorigenesis. Molecular Cell, 2013, 50, 908-918.	9.7	54
23	Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17844-17849.	7.1	55
24	Histone H2A.Z Controls a Critical Chromatin Remodeling Step Required for DNA Double-Strand Break Repair. Molecular Cell, 2012, 48, 723-733.	9.7	272
25	Mechanistic Links Between ATM and Histone Methylation Codes During DNA Repair. Progress in Molecular Biology and Translational Science, 2012, 110, 263-288.	1.7	16
26	The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1. FEBS Letters, 2012, 586, 3920-3925.	2.8	61
27	Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle, 2011, 10, 261-267.	2.6	144
28	Activation of Hif1α by the Prolylhydroxylase Inhibitor Dimethyoxalyglycine Decreases Radiosensitivity. PLoS ONE, 2011, 6, e26064.	2.5	37
29	The radioprotective agent WR1065 protects cells from radiation damage by regulating the activity of the Tip60 acetyltransferase. International Journal of Biochemistry and Molecular Biology, 2011, 2, 295-302.	0.1	1
30	Acetylation of H2AX on lysine 36 plays a key role in the DNA doubleâ€strand break repair pathway. FEBS Letters, 2010, 584, 2926-2930.	2.8	32
31	Autophagy Induction with RAD001 Enhances Chemosensitivity and Radiosensitivity through Met Inhibition in Papillary Thyroid Cancer. Molecular Cancer Research, 2010, 8, 1217-1226.	3.4	101
32	The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. Journal of Cell Biology, 2010, 191, 31-43.	5.2	166
33	Tip60: Connecting chromatin to DNA damage signaling. Cell Cycle, 2010, 9, 930-936.	2.6	184
34	Galectin-3 Targeted Therapy with a Small Molecule Inhibitor Activates Apoptosis and Enhances Both Chemosensitivity and Radiosensitivity in Papillary Thyroid Cancer. Molecular Cancer Research, 2009, 7, 1655-1662.	3.4	69
35	High-Throughput Screening Identifies Two Classes of Antibiotics as Radioprotectors: Tetracyclines and Fluoroquinolones. Clinical Cancer Research, 2009, 15, 7238-7245.	7.0	64
36	Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nature Cell Biology, 2009, 11, 1376-1382.	10.3	387

BRENDAN D PRICE

#	Article	IF	CITATIONS
37	DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity. Molecular and Cellular Biology, 2007, 27, 8502-8509.	2.3	267
38	Activation of the Kinase Activity of ATM by Retinoic Acid Is Required for CREB-dependent Differentiation of Neuroblastoma Cells. Journal of Biological Chemistry, 2007, 282, 16577-16584.	3.4	41
39	The FATC Domains of PIKK Proteins Are Functionally Equivalent and Participate in the Tip60-dependent Activation of DNA-PKcs and ATM*. Journal of Biological Chemistry, 2006, 281, 15741-15746.	3.4	116
40	Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Letters, 2006, 580, 4353-4356.	2.8	209
41	Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochemical and Biophysical Research Communications, 2006, 344, 821-826.	2.1	60
42	A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13182-13187.	7.1	629
43	DNA Damage-induced Association of ATM with Its Target Proteins Requires a Protein Interaction Domain in the N Terminus of ATM. Journal of Biological Chemistry, 2005, 280, 15158-15164.	3.4	59
44	Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Research, 2004, 32, e76-e76.	14.5	55
45	Stable siRNA-mediated silencing of ATM alters the transcriptional profile of HeLa cells. Biochemical and Biophysical Research Communications, 2004, 317, 1037-1044.	2.1	26
46	ATM's leucine-rich domain and adjacent sequences are essential for ATM to regulate the DNA damage response. Oncogene, 2003, 22, 6332-6339.	5.9	17
47	Ligation of a primer at a mutation: a method to detect low level mutations in DNA. Mutagenesis, 2002, 17, 365-374.	2.6	20
48	An amplification and ligation-based method to scan for unknown mutations in DNA. Human Mutation, 2002, 20, 139-147.	2.5	21
49	A PCR-based amplification method retaining the quantitative difference between two complex genomes. Nature Biotechnology, 2002, 20, 936-939.	17.5	74
50	Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene, 2001, 20, 5100-5110.	5.9	92
51	Caffeine inhibits the checkpoint kinase ATM. Current Biology, 1999, 9, 1135-1138.	3.9	278
52	An essential role of NFκB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Letters, 1998, 429, 365-369.	2.8	221
53	Regulation of the p53 Protein by Protein Kinase Cα and Protein Kinase Cζ. Biochemical and Biophysical Research Communications, 1998, 245, 514-518.	2.1	34
54	The DNA-Dependent Protein Kinase Participates in the Activation of NFκB Following DNA Damage. Biochemical and Biophysical Research Communications, 1998, 247, 79-83.	2.1	111

BRENDAN D PRICE

#	Article	IF	CITATIONS
55	Sequential Phosphorylation by Mitogen-activated Protein Kinase and Glycogen Synthase Kinase 3 Represses Transcriptional Activation by Heat Shock Factor-1. Journal of Biological Chemistry, 1996, 271, 30847-30857.	3.4	348
56	Activation of phospholipase C by heat shock requires GTP analogs and is resistant to pertussis toxin. Journal of Cellular Physiology, 1993, 156, 153-159.	4.1	18
57	Signalling across the endoplasmic reticulum membrane: Potential mechanisms. Cellular Signalling, 1992, 4, 465-470.	3.6	11
58	Inhibition of heat shock gene expression does not block the development of thermotolerance. Journal of Cellular Physiology, 1992, 151, 56-62.	4.1	26
59	Brefeldin A, thapsigargin, and AlF4? stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. Journal of Cellular Physiology, 1992, 152, 545-552.	4.1	97
60	Heat-induced transcription from RNA polymerases II and III and HSF binding activity are co-ordinately regulated by the products of the heat shock genes. Journal of Cellular Physiology, 1992, 153, 392-401.	4.1	30
61	Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue. Biochemical Pharmacology, 1987, 36, 4047-4054.	4.4	14
62	Chemical Modification of the Mitochodrial bc1 by N,N' -Dicyclohexylcarbodiimide Inhibits Proton Translocation. FEBS Journal, 1983, 132, 595-601.	0.2	28