Anthony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9931037/publications.pdf Version: 2024-02-01

		47006	71685
131	6,598	47	76
papers	citations	h-index	g-index
132	132	132	4090
all docs	docs citations	times ranked	citing authors

Δητήσην	

#	Article	IF	CITATIONS
1	Combined influence of Ce(III) and iodide ions for corrosion protection of AA 2024-T3 in acidic to neutral chloride-rich environments: Electrochemical and surface characterization studies. Journal of Rare Earths, 2023, 41, 309-320.	4.8	8
2	Self-healing coatings. , 2022, , 217-270.		1
3	A critical review of corrosion characteristics of additively manufactured stainless steels. International Materials Reviews, 2021, 66, 563-599.	19.3	33
4	Grain boundary character distribution in an additively manufactured austenitic stainless steel. Scripta Materialia, 2021, 192, 115-119.	5.2	39
5	A critical insight into lack-of-fusion pore structures in additively manufactured stainless steel. Additive Manufacturing, 2021, 38, 101762.	3.0	10
6	New approach to probing localised corrosion processes over wide length and time scales using integrated multi-scale electrode arrays. Corrosion Science, 2021, 181, 109238.	6.6	11
7	Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources, 2021, 10, 93.	3.5	71
8	Li leaching from Li carbonate-primer: Transport pathway development from the scribe edge of a primer/topcoat system. Progress in Organic Coatings, 2021, 158, 106284.	3.9	3
9	Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing. Corrosion Science, 2020, 165, 108412.	6.6	77
10	Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting. Corrosion Science, 2020, 165, 108394.	6.6	84
11	Investigation of the Internal Structure of a Modern Seafloor Hydrothermal Chimney With a Combination of EBSD, EPMA, and XRD. Microscopy and Microanalysis, 2020, 26, 793-807.	0.4	3
12	Observations on the Early Stages of Corrosion on AA2099-T83. Microscopy and Microanalysis, 2020, 26, 821-836.	0.4	9
13	Leaching Behavior and Corrosion Inhibition of a Rare Earth Carboxylate Incorporated Epoxy Coating System. ACS Applied Materials & Interfaces, 2019, 11, 36154-36168.	8.0	26
14	On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting. Corrosion Science, 2019, 161, 108189.	6.6	80
15	Li leaching from Lithium Carbonate-primer: An emerging perspective of transport pathway development. Progress in Organic Coatings, 2019, 134, 103-118.	3.9	15
16	Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting. Corrosion Science, 2019, 155, 67-74.	6.6	89
17	Corrosion behaviour of AA 1370 strands for wires: Identification of the critical metallurgical parameters. Corrosion Science, 2018, 134, 112-121.	6.6	3
18	A study of rare-earth 3-(4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions. Corrosion Science, 2018, 145, 199-211.	6.6	65

#	Article	lF	CITATIONS
19	Role of microstructure in corrosion initiation of a highly-deformed AA2024 wire. Corrosion Science, 2018, 144, 184-197.	6.6	10
20	An Examination of the Composition and Microstructure of Coarse Intermetallic Particles in AA2099-T8, Including Li Detection. Microscopy and Microanalysis, 2018, 24, 325-341.	0.4	20
21	Conversion Coatings. , 2018, , 108-114.		7
22	Recent Insights Into Corrosion Initiation at the Nanoscale. , 2018, , 525-551.		5
23	Probing corrosion initiation at interfacial nanostructures of AA2024-T3. Corrosion Science, 2017, 116, 98-109.	6.6	39
24	Particle induced gamma and X-ray emission spectroscopies of lithium based alloy coatings. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 167-172.	1.4	10
25	Atom Probe Tomography Studies of the Initiation of Localized Corrosion in Aluminum Alloy 2024. Microscopy and Microanalysis, 2017, 23, 696-697.	0.4	1
26	Defect density associated with constituent particles in AA2024â€ T 3 and its role in corrosion. Surface and Interface Analysis, 2016, 48, 780-788.	1.8	13
27	A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corrosion Science, 2016, 113, 160-171.	6.6	61
28	Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors. Corrosion Science, 2016, 106, 229-235.	6.6	101
29	Physico-Chemical Characterisation of Protective Coatings and Self Healing Processes. Springer Series in Materials Science, 2016, , 241-298.	0.6	0
30	Structure and Transport in Coatings from Multiscale Computed Tomography of Coatings—New Perspectives for Eelectrochemical Impedance Spectroscopy Modeling?. Electrochimica Acta, 2016, 202, 243-252.	5.2	9
31	Microstructure and corrosion of AA2024. Corrosion Reviews, 2015, 33, 1-30.	2.0	78
32	Self-healing coatings. , 2015, , 211-241.		6
33	The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part II: The influence of intermetallic compositions within heavily attacked sites. Corrosion Science, 2015, 95, 40-50.	6.6	11
34	The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part I: Average statistics of each intermetallic composition. Corrosion Science, 2015, 95, 22-39.	6.6	17
35	Diversity of internal structures in inhibited epoxy primers. AIMS Materials Science, 2015, 2, 379-391.	1.4	3
36	Comparative study of protection of AA 2024-T3 exposed to rare earth salts solutions. Corrosion Engineering Science and Technology, 2014, 49, 674-687.	1.4	13

#	Article	IF	CITATIONS
37	Coatings for corrosion prevention based on rare earths. , 2014, , 186-232.		8
38	Leaching properties of chromate-containing epoxy films using radiotracers, PALS and SEM. Progress in Organic Coatings, 2014, 77, 257-267.	3.9	35
39	Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al ₂₀ Mn ₃ Cu ₂ Dispersoid in Aluminum Alloy 2024. Langmuir, 2014, 30, 14817-14823.	3.5	17
40	The application of multiscale quasi 4D CT to the study of SrCrO4 distributions and the development of porous networks in epoxy-based primer coatings. Progress in Organic Coatings, 2014, 77, 1946-1956.	3.9	31
41	The cost and availability of rare earth-based corrosion inhibitors. , 2014, , 291-305.		2
42	Revelation of Intertwining Organic and Inorganic Fractal Structures in Polymer Coatings. Advanced Materials, 2014, 26, 4504-4508.	21.0	37
43	Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale, 2014, 6, 5791-5798.	5.6	95
44	The use of cerium and praseodymium mercaptoacetate as thiol-containing inhibitors for AA2024-T3. Corrosion Science, 2014, 81, 45-53.	6.6	54
45	Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM–EDS. Corrosion Science, 2013, 69, 346-358.	6.6	93
46	Grainâ€stored energy and the propagation of intergranular corrosion in AA2xxx aluminium alloys. Surface and Interface Analysis, 2013, 45, 1543-1547.	1.8	68
47	A consistent description of intermetallic particle composition: An analysis of ten batches of AA2024â€₹3. Surface and Interface Analysis, 2013, 45, 1558-1563.	1.8	38
48	Using X-ray tomography, PALS and Raman spectroscopy for characterization of inhibitors in epoxy coatings. Progress in Organic Coatings, 2012, 74, 726-733.	3.9	16
49	FIB/SEM study of AA2024 corrosion under a seawater drop, part II. Corrosion Science, 2012, 55, 116-125.	6.6	34
50	A new high-throughput method for corrosion testing. Corrosion Science, 2012, 58, 327-331.	6.6	42
51	Study of localized corrosion in AA2024 aluminium alloy using electron tomography. Corrosion Science, 2012, 58, 299-306.	6.6	111
52	Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy. Corrosion Science, 2012, 61, 35-44.	6.6	136
53	A combinatorial matrix of rare earth chloride mixtures as corrosion inhibitors of AA2024-T3: Optimisation using potentiodynamic polarisation and EIS. Electrochimica Acta, 2012, 67, 95-103.	5.2	64
54	Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corrosion Science, 2011, 53, 17-26.	6.6	312

#	Article	IF	CITATIONS
55	Corrosion of AA2024-T3 Part II: Co-operative corrosion. Corrosion Science, 2011, 53, 27-39.	6.6	169
56	Corrosion of AA2024-T3 Part III: Propagation. Corrosion Science, 2011, 53, 40-50.	6.6	111
57	FIB/SEM study of AA2024 corrosion under a seawater drop: Part I. Corrosion Science, 2011, 53, 1086-1096.	6.6	45
58	The effect of inhibitor structure on the corrosion of AA2024 and AA7075. Corrosion Science, 2011, 53, 2184-2190.	6.6	119
59	The characterisation and performance of Ce(dbp)3-inhibited epoxy coatings. Progress in Organic Coatings, 2011, 70, 91-101.	3.9	77
60	Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: Synthesis and proof of concept. Progress in Organic Coatings, 2011, 70, 142-149.	3.9	166
61	A combined redox-competition and negative-feedback SECM study of self-healing anticorrosive coatings. Electrochemistry Communications, 2011, 13, 1094-1097.	4.7	59
62	Electron-Beam-Induced Carbon Contamination on Silicon: Characterization Using Raman Spectroscopy and Atomic Force Microscopy. Microscopy and Microanalysis, 2010, 16, 13-20.	0.4	21
63	Nanotomography for understanding materials degradation. Scripta Materialia, 2010, 63, 835-838.	5.2	45
64	Applying SEMâ€Based Xâ€ray Microtomography to Observe Selfâ€Healing in Solvent Encapsulated Thermoplastic Materials. Advanced Engineering Materials, 2010, 12, 228-234.	3.5	59
65	The influence of pH on corrosion inhibitor selection for 2024-T3 aluminium alloy assessed by high-throughput multielectrode and potentiodynamic testing. Electrochimica Acta, 2010, 55, 2457-2465.	5.2	73
66	Sheet AA2024â€T3: a new investigation of microstructure and composition. Surface and Interface Analysis, 2010, 42, 334-338.	1.8	53
67	Stable pit formation on AA2024-T3 in a NaCl environment. Corrosion Science, 2010, 52, 90-103.	6.6	181
68	Co-operative corrosion phenomena. Corrosion Science, 2010, 52, 665-668.	6.6	42
69	Designing green, self-healing coatings for metal protection. NPG Asia Materials, 2010, 2, 143-151.	7.9	190
70	Factors influencing the deposition of Ce-based conversion coatings, Part II: The role of localised reactions. Surface and Coatings Technology, 2009, 203, 2937-2945.	4.8	26
71	Factors influencing the deposition of Ce-based conversion coatings, part I: The role of Al3+ ions. Surface and Coatings Technology, 2009, 203, 2927-2936.	4.8	34
72	A rapid screening multi-electrode method for the evaluation of corrosion inhibitors. Electrochimica Acta, 2009, 54, 3402-3411.	5.2	97

#	Article	IF	CITATIONS
73	How complex is the microstructure of AA2024-T3?. Corrosion Science, 2009, 51, 1565-1568.	6.6	170
74	High-throughput channel arrays for inhibitor testing: Proof of concept for AA2024-T3. Corrosion Science, 2009, 51, 2279-2290.	6.6	44
75	Non-chromate deoxidation of AA2024-T3: Sodium bromate–nitric acid (20–60°C). Applied Surface Science, 2008, 254, 3562-3575.	6.1	17
76	AIRLIFE - TOWARDS A FLEET MANAGEMENT TOOL FOR CORROSION DAMAGE. Corrosion Reviews, 2007, 25, 275-294.	2.0	17
77	TOWARDS REPLACEMENT OF CHROMATE INHIBITORS BY RARE EARTH SYSTEMS. Corrosion Reviews, 2007, 25, 591-606.	2.0	23
78	Influence of Praseodymium. Electrochemical and Solid-State Letters, 2007, 10, C72.	2.2	38
79	Corrosion protection of AA2024-T3 using rare earth diphenyl phosphates. Electrochimica Acta, 2007, 52, 4024-4031.	5.2	92
80	Corrosion in artificial defects. II. Chromate reactions. Corrosion Science, 2006, 48, 1827-1847.	6.6	46
81	Corrosion in artificial defects. I: Development of corrosion. Corrosion Science, 2006, 48, 1812-1826.	6.6	38
82	The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Applied Surface Science, 2006, 253, 1770-1780.	6.1	211
83	Chromate leaching from inhibited primers. Progress in Organic Coatings, 2006, 56, 23-32.	3.9	59
84	Chromate leaching from inhibited primers. Progress in Organic Coatings, 2006, 56, 33-38.	3.9	50
85	Combined nuclear microprobe and TEM study of corrosion pit nucleation by intermetallics in aerospace aluminium alloys. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 457-462.	1.4	15
86	Non-chromate deoxidation of AA2024-T3 using Fe(III)-HF-HNO3. Surface and Interface Analysis, 2005, 37, 15-23.	1.8	10
87	A morphological study of filiform corrosive attack on cerated AA2024-T351 aluminium alloy. Corrosion Science, 2005, 47, 107-124.	6.6	25
88	Development of cerium-based conversion coatings on 2024-T3 Al alloy after rare-earth desmutting. Surface and Interface Analysis, 2004, 36, 290-303.	1.8	73
89	Characterization of non-Cr-based deoxidizers on Al alloy 7475-T7651. Surface and Interface Analysis, 2004, 36, 1523-1532.	1.8	12
90	SEM and RBS characterization of a cobalt-based conversion coating process on AA2024-T3 and AA7075-T6. Surface and Interface Analysis, 2004, 36, 1585-1591.	1.8	13

#	Article	IF	CITATIONS
91	A morphological study of filiform corrosive attack on chromated and alkaline-cleaned AA2024-T351 aluminium alloy. Corrosion Science, 2004, 46, 1201-1224.	6.6	26
92	Oxide formation on aluminium alloys in boiling deionised water and NaCl, CeCl3 and CrCl3 solutions. Corrosion Science, 2003, 45, 1103-1124.	6.6	48
93	The use of macroscopic modelling of intermetallic phases in aluminium alloys in the study of ferricyanide accelerated chromate conversion coatings. Corrosion Science, 2002, 44, 1755-1781.	6.6	35
94	Filiform corrosion imaged beneath protection layers on Al alloys. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 365-369.	1.4	10
95	Study of deoxidation of 2024-T3 with various acids. Materials Science and Technology, 2001, 17, 1642-1652.	1.6	22
96	The use of macroscopic modelling of intermetallic phases in aluminium alloys in the study of ferricyanide accelerated chromate conversion coatings. Micron, 2001, 32, 777-787.	2.2	8
97	Characterisation of aluminium alloys after HNO ₃ /HF–NaOH–HNO ₃ /HF pretreatment. Materials Science and Technology, 2001, 17, 1211-1221.	1.6	26
98	Desmutting of aluminium alloy 2024-T3 using rare earth electrolyte. Materials Science and Technology, 1999, 15, 1124-1132.	1.6	21
99	The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ionics, 1999, 121, 1-10.	2.7	160
100	Characterization of Supported Ruthenium Catalysts Derived from Reaction of Ru3(CO)12with Rare Earth Oxides. Journal of Catalysis, 1998, 178, 84-93.	6.2	12
101	The importance of sulfiding temperature of a HDS catalyst in the conversion of unsaturates in a benzene, toluene and xylene (BTX) feed. Applied Catalysis B: Environmental, 1998, 16, 165-175.	20.2	3
102	Surface Chemistry of Supported Chromium Oxide on Lanthanum Carbonate. Journal of Catalysis, 1997, 171, 313-319.	6.2	18
103	Reaction of triruthenium dodecacarbonyl with high-area rare earth oxides. Inorganica Chimica Acta, 1997, 254, 37-41.	2.4	4
104	The characterisation of Ce-Mo-based conversion coatings on Al-alloys: Part I. Corrosion Science, 1996, 38, 1957-1976.	6.6	82
105	The characterisation of Ce-Mo-based conversion coatings on Al-alloys: Part II. Corrosion Science, 1996, 38, 1977-1990.	6.6	29
106	Surface area control during the synthesis and reduction of high area ceria catalyst supports. Applied Catalysis A: General, 1996, 134, 351-362.	4.3	86
107	Segregation in Single-Crystal Fully Stabilized Yttria-Zirconia. Journal of the American Ceramic Society, 1995, 78, 369-378.	3.8	59
108	Moisture sensitive degradation in TiO2-Y2O3-ZrO2. Journal of the European Ceramic Society, 1995, 15, 1125-1134.	5.7	18

#	Article	IF	CITATIONS
109	Interfacial phenomena in Y2O3-ZrO2-based ceramics: A surface science perspective. Materials Science Monographs, 1995, , 183-238.	0.0	4
110	Hydrogenation of CO over a Ru-promoted Cobalt/Cerium Oxide Catalyst. Studies in Surface Science and Catalysis, 1994, 81, 427-432.	1.5	3
111	Role of O2–, OH–and anion vacancies in the degradation of Y-TZP in moist environments. Journal of Materials Chemistry, 1994, 4, 257-263.	6.7	14
112	Synthesis and Structure of Valleriite, a Layered Metal Hydroxide/Sulfide Composite. Journal of Solid State Chemistry, 1993, 104, 422-436.	2.9	13
113	An XPS study of Ru-promotion for Co/CeO2 Fischer-Tropsch catalyst. Applied Surface Science, 1993, 72, 55-65.	6.1	62
114	Ruthenium promotion of fischer-tropsch synthesis over coprecipitated cobalt/ceria catalysts. Applied Catalysis A: General, 1993, 100, 51-67.	4.3	59
115	Characterisation of the thermal transformation of hydrous aluminas by XPS and NMR. Materials Letters, 1993, 17, 303-308.	2.6	9
116	Examination of de-coking of promoted (Co, Ni) Mo/γ-Al2O3 catalysts by X-ray photoelectron spectroscopy. Applied Catalysis A: General, 1992, 90, 117-129.	4.3	6
117	The effects of sintering atmosphere on impurity phase formation and grain boundary resistivity in Y2O3-fully stabilized ZrO2. Journal of the European Ceramic Society, 1992, 10, 115-122.	5.7	53
118	Shallow reorientation in the surface dynamics of plasma-treated fluorinated ethylene-propylene polymer. Langmuir, 1991, 7, 2484-2491.	3.5	70
119	Comments on the use of implanted Ar as a binding energy reference. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, C15-C18.	1.7	38
120	Impurity segregation study at the surface of yttria-zircOnia electrolytes by XPS. Solid State Ionics, 1990, 40-41, 312-315.	2.7	29
121	STM investigation of galena surfaces in air. Surface Science, 1990, 232, L211-L214.	1.9	20
122	Curve fitting XPS spectra. Journal of Electron Spectroscopy and Related Phenomena, 1988, 46, 31-42.	1.7	89
123	TEM and X-Ray Photoelectron Spectroscopic Studies of Wool Fibers after Cuticle Removal. Textile Reseach Journal, 1988, 58, 640-645.	2.2	9
124	X-Ray Photoelectron Spectroscopic Study of the Wool Fiber Surface. Textile Reseach Journal, 1986, 56, 457-461.	2.2	63
125	Surface intermediates in the reaction of methanol, formaldehyde and methyl formate on copper (110). Applications of Surface Science, 1985, 22-23, 404-414.	1.0	6
126	Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy. Applications of Surface Science, 1985, 22-23, 236-251.	1.0	29

Anthony

#	Article	IF	CITATIONS
127	A spectroscopic study of the adsorption and reactions of methanol, formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces. Surface Science, 1985, 155, 366-386.	1.9	230
128	A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces. Surface Science, 1984, 140, 227-248.	1.9	312
129	Methanol and formaldehyde molecular states on copper surfaces at 300 K?. Surface Science, 1984, 146, L561-L565.	1.9	7
130	Diffusion of dextran at intermediate concentrations. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 1209.	1.0	29
131	Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. , 0, , .		29