List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/992566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 2015, 66, 487-511.	18.7	1,075
2	Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 2010, 13, 459-465.	7.1	705
3	Network Properties of Robust Immunity in Plants. PLoS Genetics, 2009, 5, e1000772.	3.5	489
4	<i>Arabidopsis</i> lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19824-19829.	7.1	442
5	Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 2017, 55, 401-425.	7.8	423
6	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	7.3	401
7	Interplay between MAMPâ€ŧriggered and SAâ€mediated defense responses. Plant Journal, 2008, 53, 763-775.	5.7	318
8	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	9.3	247
9	CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant Journal, 2011, 67, 1029-1041.	5.7	244
10	Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens, 2009, 5, e1000301.	4.7	242
11	Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 2014, 5, 697.	3.6	224
12	Understanding the Plant Immune System. Molecular Plant-Microbe Interactions, 2010, 23, 1531-1536.	2.6	212
13	Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana. PLoS Genetics, 2013, 9, e1004015.	3.5	208
14	Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2364-2373.	7.1	205
15	The <i>Arabidopsis</i> <scp>CERK</scp> 1â€associated kinase <scp>PBL</scp> 27 connects chitin perception to <scp>MAPK</scp> activation. EMBO Journal, 2016, 35, 2468-2483.	7.8	202
16	The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity. Plant Cell, 2018, 30, 1199-1219.	6.6	169
17	Transcriptome landscape of a bacterial pathogen under plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3055-E3064.	7.1	166
18	Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during <i>Arabidopsis</i> immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6211-6216.	7.1	165

#	Article	IF	CITATIONS
19	Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nature Communications, 2017, 8, 1808.	12.8	163
20	Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biology, 2015, 16, 31.	8.8	150
21	The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genetics, 2017, 13, e1006639.	3.5	138
22	Danger peptide receptor signaling in plants ensures basal immunity upon pathogenâ€induced depletion of <scp>BAK</scp> 1. EMBO Journal, 2016, 35, 46-61.	7.8	133
23	The peptide growth factor, phytosulfokine, attenuates patternâ€ŧriggered immunity. Plant Journal, 2012, 71, 194-204.	5.7	128
24	The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO Journal, 2014, 33, 62-75.	7.8	128
25	Towards engineering of hormonal crosstalk in plant immunity. Current Opinion in Plant Biology, 2017, 38, 164-172.	7.1	125
26	Activation of the <i>Arabidopsis thaliana</i> Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 2012, 25, 471-480.	2.6	123
27	A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. Plant Cell, 2018, 30, 2480-2494.	6.6	119
28	Mechanisms Underlying Robustness and Tunability in a Plant Immune Signaling Network. Cell Host and Microbe, 2014, 15, 84-94.	11.0	117
29	Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling. PLoS Pathogens, 2010, 6, e1001011.	4.7	110
30	Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by <i>Arabidopsis</i> immunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7456-7461.	7.1	110
31	Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 3-14.	2.6	105
32	An efficient <i>Agrobacterium</i> â€mediated transient transformation of Arabidopsis. Plant Journal, 2012, 69, 713-719.	5.7	95
33	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	3.4	94
34	Physical association of patternâ€ŧriggered immunity (PTI) and effectorâ€ŧriggered immunity (ETI) immune receptors in Arabidopsis. Molecular Plant Pathology, 2011, 12, 702-708.	4.2	91
35	The CALMODULIN-BINDING PROTEIN60 Family Includes Both Negative and Positive Regulators of Plant Immunity. Plant Physiology, 2013, 163, 1741-1751.	4.8	91
36	A dominantâ€interfering <i>camta3</i> mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 1667-1680.	7.3	73

#	Article	IF	CITATIONS
37	A Golgi-Released Subpopulation of the Trans-Golgi Network Mediates Protein Secretion in Arabidopsis. Plant Physiology, 2019, 179, 519-532.	4.8	73
38	Three Arabidopsis MBF1 Homologs with Distinct Expression Profiles Play Roles as Transcriptional Co-activators. Plant and Cell Physiology, 2004, 45, 225-231.	3.1	65
39	<i>Magnaporthe oryzae</i> -Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. Molecular Plant-Microbe Interactions, 2016, 29, 299-312.	2.6	61
40	Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nature Plants, 2020, 6, 883-896.	9.3	54
41	An incoherent feedâ€forward loop mediates robustness and tunability in a plant immune network. EMBO Reports, 2017, 18, 464-476.	4.5	51
42	The receptorâ€like cytoplasmic kinase <scp>PCRK</scp> 1 contributes to patternâ€triggered immunity against <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . New Phytologist, 2015, 207, 78-90.	7.3	50
43	Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Frontiers in Plant Science, 2013, 4, 403.	3.6	46
44	Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 1-10.	2.4	45
45	A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1573-1583.	2.6	45
46	The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 2019, 50, 58-66.	7.1	44
47	Toward a systems understanding of plantââ,¬â€œmicrobe interactions. Frontiers in Plant Science, 2014, 5, 423.	3.6	42
48	Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry, 2022, 66, 647-656.	4.7	42
49	The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. Journal of Plant Physiology, 2010, 167, 194-200.	3.5	41
50	Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. Journal of Experimental Botany, 2011, 62, 2117-2129.	4.8	39
51	Molecular networks in plant–pathogen holobiont. FEBS Letters, 2018, 592, 1937-1953.	2.8	38
52	Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genetics, 2016, 12, e1005990.	3.5	38
53	Division of Tasks: Defense by the Spatial Separation of Antagonistic Hormone Activities. Plant and Cell Physiology, 2018, 59, 3-4.	3.1	36
54	Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nature Communications, 2019, 10, 2853.	12.8	35

#	Article	IF	CITATIONS
55	The interplay between MAMP and SA signaling. Plant Signaling and Behavior, 2008, 3, 359-361.	2.4	33
56	Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1. PLoS ONE, 2013, 8, e60769.	2.5	30
57	Ethylene in Plants. , 2015, , .		28
58	Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887.	6.6	27
59	Plant-Microbiota Interactions in Abiotic Stress Environments. Molecular Plant-Microbe Interactions, 2022, 35, 511-526.	2.6	26
60	Arabidopsis MBF1s Control Leaf Cell Cycle and its Expansion. Plant and Cell Physiology, 2009, 50, 254-264.	3.1	21
61	Convergence of cellâ€surface and intracellular immune receptor signalling. New Phytologist, 2019, 221, 1676-1678.	7.3	20
62	Transcriptional coactivator MBF1s from Arabidopsis predominantly localize in nucleolus. Journal of Plant Research, 2005, 118, 431-437.	2.4	18
63	MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signaling and Behavior, 2012, 7, 188-192.	2.4	17
64	PhcQ mainly contributes to the regulation of quorum sensingâ€dependent genes, in which PhcR is partially involved, in <i>Ralstonia pseudosolanacearum</i> strain OE1â€1. Molecular Plant Pathology, 2021, 22, 1538-1552.	4.2	14
65	Inter-organismal phytohormone networks in plant-microbe interactions. Current Opinion in Plant Biology, 2022, 68, 102258.	7.1	14
66	Letter to the Editor: DNA Purification-Free PCR from Plant Tissues. Plant and Cell Physiology, 2021, 62, 1503-1505.	3.1	9
67	A simple and extremely sensitive system for detecting estrogenic activity using transgenic Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2006, 64, 106-114.	6.0	8
68	Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. New Phytologist, 2022, 235, 1146-1162.	7.3	8
69	Ethylene and Plant Immunity. , 2015, , 205-221.		5
70	Evolutionary footprint of plant immunity. Current Opinion in Plant Biology, 2022, 67, 102209.	7.1	5
71	In planta Transcriptome Analysis of Pseudomonas syringae. Bio-protocol, 2018, 8, e2987.	0.4	4
72	An Efficient Method for DNA Purificationâ€Free PCR from Plant Tissue. Current Protocols, 2021, 1, e289.	2.9	3

#	Article	IF	CITATIONS
73	Editorial Feature: Meet the PCP Editor â \in " Kenichi Tsuda. Plant and Cell Physiology, 2021, , .	3.1	1
74	Focus on the Role of the Abiotic Environment on Interactions Between Plants and Microbes. Molecular Plant-Microbe Interactions, 2022, 35, 510.	2.6	0