
Jose A MorÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9925656/publications.pdf Version: 2024-02-01

Ιοςε Δ Μοράζη

#	Article	IF	CITATIONS
1	Behavioral outcomes of complete Freund adjuvant–induced inflammatory pain in the rodent hind paw: a systematic review and meta-analysis. Pain, 2022, 163, 809-819.	4.2	15
2	Effects of inflammatory pain on CB1 receptor in the midbrain periaqueductal gray. Pain Reports, 2021, 6, e897.	2.7	10
3	Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biological Psychiatry, 2021, 90, 766-780.	1.3	10
4	Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. International Review of Neurobiology, 2021, 157, 31-68.	2.0	2
5	Long-term inflammatory pain does not impact exploratory behavior and stress coping strategies in mice. Pain, 2021, 162, 1705-1721.	4.2	4
6	Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior. Nature Neuroscience, 2021, 24, 1601-1613.	14.8	57
7	An endogenous opioid circuit determines state-dependent reward consumption. Nature, 2021, 598, 646-651.	27.8	49
8	Synthesis and Pharmacology of a Novel μ–δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. Journal of Medicinal Chemistry, 2020, 63, 13618-13637.	6.4	22
9	Dose-dependent induction of CPP or CPA by intra-pVTA ethanol: Role of mu opioid receptors and effects on NMDA receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 100, 109875.	4.8	8
10	A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 2019, 20, 96-127.	10.7	53
11	Opioid receptors inhibit the spinal AMPA receptor Ca2+ permeability that mediates latent pain sensitization. Experimental Neurology, 2019, 314, 58-66.	4.1	30
12	Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System. Neuron, 2019, 102, 564-573.e6.	8.1	139
13	Pain And Opioid Systems, Implications In The Opioid Epidemic. Current Opinion in Behavioral Sciences, 2019, 26, 69-74.	3.9	7
14	Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase–mTORC1 Translational Pathway. Journal of Neuroscience, 2018, 38, 2780-2795.	3.6	27
15	The dynamic interaction between pain and opioid misuse. British Journal of Pharmacology, 2018, 175, 2770-2777.	5.4	34
16	A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System. Frontiers in Neuroscience, 2016, 10, 480.	2.8	40
17	Morphine-Associated Contextual Cues Induce Structural Plasticity in Hippocampal CA1 Pyramidal Neurons. Neuropsychopharmacology, 2016, 41, 2668-2678.	5.4	25
18	Identification of an epidermal keratinocyte AMPA glutamate receptor involved in dermatopathies associated with sensory abnormalities. Pain Reports, 2016, 1, e573.	2.7	4

Jose A MorÃ³n

#	Article	IF	CITATIONS
19	Upregulation of Dopamine D2 Receptors in the Nucleus Accumbens Indirect Pathway Increases Locomotion but Does Not Reduce Alcohol Consumption. Neuropsychopharmacology, 2015, 40, 1609-1618.	5.4	38
20	Morphine Regulated Synaptic Networks Revealed by Integrated Proteomics and Network Analysis. Molecular and Cellular Proteomics, 2015, 14, 2564-2576.	3.8	16
21	Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors. Journal of Neuroscience, 2015, 35, 12217-12231.	3.6	90
22	Does the kappa opioid receptor system contribute to pain aversion?. Frontiers in Pharmacology, 2014, 5, 253.	3.5	77
23	Hippocampal Long-Term Potentiation Is Disrupted during Expression and Extinction But Is Restored after Reinstatement of Morphine Place Preference. Journal of Neuroscience, 2014, 34, 527-538.	3.6	65
24	Increased Small Conductance Calcium-Activated Potassium Type 2 Channel-Mediated Negative Feedback on N-methyl-D-aspartate Receptors Impairs Synaptic Plasticity Following Context-Dependent Sensitization to Morphine. Biological Psychiatry, 2014, 75, 105-114.	1.3	39
25	Pain after Discontinuation of Morphine Treatment Is Associated with Synaptic Increase of GluA4-Containing AMPAR in the Dorsal Horn of the Spinal Cord. Neuropsychopharmacology, 2013, 38, 1472-1484.	5.4	22
26	Hippocampal GluA1-Containing AMPA Receptors Mediate Context-Dependent Sensitization to Morphine. Journal of Neuroscience, 2011, 31, 16279-16291.	3.6	45
27	Increased Insertion of Clutamate Receptor 2-Lacking α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid (AMPA) Receptors at Hippocampal Synapses upon Repeated Morphine Administration. Molecular Pharmacology, 2010, 77, 874-883.	2.3	46
28	Modulation of Opiate-Related Signaling Molecules in Morphine-Dependent Conditioned Behavior: Conditioned Place Preference to Morphine Induces CREB Phosphorylation. Neuropsychopharmacology, 2010, 35, 955-966.	5.4	63
29	Extinction of morphineâ€dependent conditioned behavior is associated with increased phosphorylation of the GluR1 subunit of AMPA receptors at hippocampal synapses. European Journal of Neuroscience, 2009, 29, 55-64.	2.6	35
30	Morphine Administration Alters the Profile of Hippocampal Postsynaptic Density-associated Proteins. Molecular and Cellular Proteomics, 2007, 6, 29-42.	3.8	112
31	Use of proteomics for the identification of novel drug targets in brain diseases. Journal of Neurochemistry, 2007, 102, 306-315.	3.9	15
32	Mitogen-Activated Protein Kinase Regulates Dopamine Transporter Surface Expression and Dopamine Transport Capacity. Journal of Neuroscience, 2003, 23, 8480-8488.	3.6	239
33	Dopamine Uptake through the Norepinephrine Transporter in Brain Regions with Low Levels of the Dopamine Transporter: Evidence from Knock-Out Mouse Lines. Journal of Neuroscience, 2002, 22, 289, 295	3.6	557