Byung Chul Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/992306/publications.pdf

Version: 2024-02-01

45 548
papers citations

548 15 22 itations h-index g-index

46 46 all docs docs citations

46 times ranked 220 citing authors

#	Article	IF	CITATIONS
1	Inspection of Underwater Hull Surface Condition Using the Soft Voting Ensemble of the Transfer-Learned Models. Sensors, 2022, 22, 4392.	3.8	7
2	End-to-end digitization of image format piping and instrumentation diagrams at an industrially applicable level. Journal of Computational Design and Engineering, 2022, 9, 1298-1326.	3.1	8
3	Practical method for the fast generation of a CAM model for jet engine parts. Advances in Mechanical Engineering, 2021, 13, 168781402110027.	1.6	3
4	Neutral model-based interfacing of 3D design to support collaborative project management in the process plant industry. Journal of Computational Design and Engineering, 2021, 8, 824-835.	3.1	4
5	Parametric optimization of FPSO hull dimensions for Brazil field using sophisticated stability and hydrodynamic calculations. International Journal of Naval Architecture and Ocean Engineering, 2021, 13, 478-492.	2.3	5
6	Lifecycle management of component catalogs based on a neutral model to support seamless integration with plant 3D design. Journal of Computational Design and Engineering, 2021, 8, 409-427.	3.1	6
7	Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems. Scientific Reports, 2021, 11, 22147.	3.3	18
8	ISO 15926–based integration of process plant life-cycle information including maintenance activity. Concurrent Engineering Research and Applications, 2020, 28, 58-71.	3.2	6
9	Method for automatically generating a two-dimensional triangular mesh of a bone from a CT image considering its density heterogeneity. Journal of Mechanical Science and Technology, 2020, 34, 2941-2952.	1.5	1
10	Maintenance Framework for Repairing Partially Damaged Parts Using 3D Printing. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1451-1464.	2.2	15
11	B-rep model simplification using selective and iterative volume decomposition to obtain finer multi-resolution models. CAD Computer Aided Design, 2019, 112, 23-34.	2.7	19
12	Part library-based information retrieval and inspection framework to support part maintenance using 3D printing technology. Rapid Prototyping Journal, 2019, 25, 630-644.	3.2	13
13	Similarity comparison of original and remodeled plant 3D piping CAD models using quantitative evaluation metrics for offshore plants. Journal of Marine Science and Technology, 2018, 23, 647-661.	2.9	3
14	User-assisted integrated method for controlling level of detail of large-scale B-rep assembly models. International Journal of Computer Integrated Manufacturing, 2018, 31, 881-892.	4.6	13
15	Feature shape complexity: a new criterion for the simplification of feature-based 3D CAD models. International Journal of Advanced Manufacturing Technology, 2017, 88, 1831-1843.	3.0	21
16	Three-dimensional solid reconstruction of a human bone from CT images using interpolation with triangular Bézier patches. Journal of Mechanical Science and Technology, 2017, 31, 3875-3886.	1.5	12
17	Extended progressive simplification of feature-based CAD models. International Journal of Advanced Manufacturing Technology, 2017, 93, 915-932.	3.0	8
18	Toward standardized exchange of plant 3D CAD models using ISO 15926. CAD Computer Aided Design, 2017, 83, 80-95.	2.7	24

#	Article	IF	Citations
19	CAD model simplification using feature simplifications. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2016, 10, JAMDSM0099-JAMDSM0099.	0.7	4
20	Enhancement of equipment information sharing using three-dimensional computer-aided design simplification and digital catalog techniques in the plant industry. Concurrent Engineering Research and Applications, 2016, 24, 275-289.	3.2	14
21	A Fast Generation Method of CAM Model for Machining of Jet Engines Using Shape Search. Transactions of the Korean Society of Mechanical Engineers, A, 2016, 40, 327-336.	0.2	o
22	Enhanced volume decomposition minimizing overlapping volumes for the recognition of design features. Journal of Mechanical Science and Technology, 2015, 29, 5289-5298.	1.5	16
23	Verification of product design using regulation knowledgebase and Web services. Journal of Mechanical Science and Technology, 2015, 29, 5113-5119.	1.5	3
24	Graph-Based Simplification of Feature-Based Three-Dimensional Computer-Aided Design Models for Preserving Connectivity. Journal of Computing and Information Science in Engineering, 2015, 15, .	2.7	16
25	Simplification of feature-based 3D CAD assembly data of ship and offshore equipment using quantitative evaluation metrics. CAD Computer Aided Design, 2015, 59, 140-154.	2.7	40
26	Counter-deformed design of ship structural parts using geometric shape deformation based on welding distortion estimation. Journal of Marine Science and Technology, 2015, 20, 442-453.	2.9	5
27	Automatic Generation of CAM Model for Machining Holes for Jet Engine Compressor Case Based on Feature Recognition. Transactions of the Korean Society of Mechanical Engineers, A, 2015, 39, 337-345.	0.2	2
28	Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants. Korean Journal of Computational Design and Engineering, 2015, 20, 385-400.	0.0	0
29	Stepwise volume decomposition for the modification of B-rep models. International Journal of Advanced Manufacturing Technology, 2014, 75, 1393-1403.	3.0	24
30	Method to simplify ship outfitting and offshore plant equipment three-dimensional (3-D) computer-aided design (CAD) data for construction of an equipment catalog. Journal of Marine Science and Technology, 2014, 19, 185-196.	2.9	28
31	Feature-based simplification of boundary representation models using sequential iterative volume decomposition. Computers and Graphics, 2014, 38, 97-107.	2.5	47
32	Non-overlapping Volume Decomposition Using Maximum Volumes. Korean Journal of Computational Design and Engineering, 2014, 19, 50-60.	0.0	1
33	Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials. Transactions of the Korean Society of Mechanical Engineers, A, 2014, 38, 1075-1084.	0.2	1
34	Stepwise Volume Decomposition Considering Design Feature Recognition. Korean Journal of Computational Design and Engineering, 2013, $18,71-82$.	0.0	1
35	Development of Procedural 2D CAD Data Translator Supporting ISO 10303 STEP. Transactions of the Korean Society of Mechanical Engineers, A, 2013, 37, 693-705.	0.2	0
36	Development of 3D CAD Part Data Simplification System for Ship and Offshore Plant Equipment. Korean Journal of Computational Design and Engineering, 2013, 18, 167-176.	0.0	1

#	Article	IF	CITATION
37	Simplification of Boundary Representation Models Based on Stepwise Volume Decomposition. Transactions of the Korean Society of Mechanical Engineers, A, 2013, 37, 1305-1313.	0.2	1
38	Name matching method using topology merging and splitting history for exchange of feature-based CAD models. Journal of Mechanical Science and Technology, 2012, 26, 3201-3212.	1.5	15
39	Parametric exchange of round shapes between a mechanical CAD system and a ship CAD system. CAD Computer Aided Design, 2012, 44, 154-161.	2.7	22
40	A procedural method to exchange editable 3D data from a free-hand 2D sketch modeling system into 3D mechanical CAD systems. CAD Computer Aided Design, 2012, 44, 123-131.	2.7	22
41	Integration of distributed plant lifecycle data using ISO 15926 and Web services. Annals of Nuclear Energy, 2011, 38, 2309-2318.	1.8	26
42	A method to exchange procedurally represented 2D CAD model data using ISO 10303 STEP. CAD Computer Aided Design, 2011, 43, 1717-1728.	2.7	15
43	Web Service with Parallel Processing Capabilities for the Retrieval of CAD Assembly Data. Concurrent Engineering Research and Applications, 2011, 19, 5-18.	3.2	10
44	Retrieval of CAD model data based on Web Services for collaborative product development in a distributed environment. International Journal of Advanced Manufacturing Technology, 2010, 50, 1085-1099.	3.0	21
45	Integration of history-based parametric translators using the automation APIs. International Journal of Product Lifecycle Management, 2007, 2, 18.	0.3	27