Mirko Piersanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning based event reconstruction for the Limadou High-Energy Particle Detector. Physical Review D, 2022, 105, .	4.7	Ο
2	On the Source of the Anomalous ULF Waves Detected at Both Ground and Spaceâ€Borne Data on 23 June 2020. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
3	On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite. Remote Sensing, 2022, 14, 1936.	4.0	3
4	Solar Flux Influence on the In‣itu Plasma Density at Topside Ionosphere Measured by Swarm Satellites. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	14
5	Prominence of the training data preparation in geomagnetic storm prediction using deep neural networks. Scientific Reports, 2022, 12, 7631.	3.3	5
6	On the Magnetosphereâ€lonosphere Coupling During the May 2021 Geomagnetic Storm. Space Weather, 2022, 20, .	3.7	4
7	Can an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm and THEMIS data. Advances in Space Research, 2021, 67, 35-45.	2.6	12
8	Storm-Time Features of the Ionospheric ELF/VLF Waves and Energetic Electron Fluxes Revealed by the China Seismo-Electromagnetic Satellite. Applied Sciences (Switzerland), 2021, 11, 2617.	2.5	18
9	Trapped Proton Fluxes Estimation Inside the South Atlantic Anomaly Using the NASA AE9/AP9/SPM Radiation Models along the China Seismo-Electromagnetic Satellite Orbit. Applied Sciences (Switzerland), 2021, 11, 3465.	2.5	4
10	A mathematical model of lithosphere–atmosphere coupling for seismic events. Scientific Reports, 2021, 11, 8682.	3.3	19
11	Electric Field Multifractal Features in the High-Latitude Ionosphere: CSES-01 Observations. Atmosphere, 2021, 12, 646.	2.3	7
12	The August 2018 Geomagnetic Storm Observed by the High-Energy Particle Detector on Board the CSES-01 Satellite. Applied Sciences (Switzerland), 2021, 11, 5680.	2.5	13
13	Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sensing, 2021, 13, 2493.	4.0	9
14	The HEPD-02 trigger and PMT readout system for the CSES-02 mission. , 2021, , .		0
15	On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event. Remote Sensing, 2021, 13, 2839.	4.0	2
16	The High-Energy Particle Detector (HEPD-01) as a space weather monitoring instrument on board the CSES-01 satellite. , 2021, , .		0
17	Spacetime Hall-MHD Turbulence at Sub-ion Scales: Structures or Waves?. Astrophysical Journal Letters, 2021, 917, L12.	8.3	9
18	Control and data acquisition software of the highâ€energy particle detector on board the China Seismoâ€Electromagnetic Satellite space mission. Software - Practice and Experience, 2021, 51, 1459-1480.	3.6	10

Mirko Piersanti

#	Article	IF	CITATIONS
19	The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation. Instruments, 2021, 5, 1.	1.8	21
20	Multidimensional Iterative Filtering: a new approach for investigating plasma turbulence in numerical simulations. Journal of Plasma Physics, 2020, 86, .	2.1	12
21	The Seismic Electromagnetic Emissions During the 2010 Mw 7.8 Northern Sumatra Earthquake Revealed by DEMETER Satellite. Frontiers in Earth Science, 2020, 8, .	1.8	13
22	Properties of Solar Wind Structures at Mercury's Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028281.	2.4	5
23	Including the Temporal Dimension in the SECS Technique. Space Weather, 2020, 18, e2020SW002491.	3.7	2
24	Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sensing, 2020, 12, 3299.	4.0	37
25	An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm. Energy Economics, 2020, 92, 104952.	12.1	6
26	Beam test calibrations of the HEPD detector on board the China Seismo-Electromagnetic Satellite. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 974, 164170.	1.6	15
27	Simultaneous Observations of ELF/VLF Risingâ€Tone Quasiperiodic Waves and Energetic Electron Precipitations in the Highâ€Latitude Upper Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027574.	2.4	13
28	Geomagnetically induced currents. , 2020, , 121-134.		2
29	Galactic Cosmic-Ray Hydrogen Spectra in the 40–250 MeV Range Measured by the High-energy Particle Detector (HEPD) on board the CSES-01 Satellite between 2018 and 2020. Astrophysical Journal, 2020, 901, 8.	4.5	19
30	From the Sun to Earth: effects of the 25ÂAugustÂ2018 geomagnetic storm. Annales Geophysicae, 2020, 38, 703-724.	1.6	52
31	Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board the CSES. Astrophysical Journal, Supplement Series, 2019, 243, 16.	7.7	33
32	Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. , 2019, , .		2
33	Geoelectric Field Evaluation During the September 2017 Geomagnetic Storm: MA.I.GIC. Model. Space Weather, 2019, 17, 1241-1256.	3.7	18
34	On some features characterizing the plasmasphere–magnetosphere–ionosphere system during the geomagnetic storm of 27 May 2017. Earth, Planets and Space, 2019, 71, 77.	2.5	18
35	Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. Journal of Space Weather and Space Climate, 2019, 9, A35.	3.3	17
36	Space-Weather capabilities and preliminary results of the High Energy Particle Detector (HEPD) on-board the CSES-01 satellite. , 2019, , .		1

Mirko Piersanti

#	Article	IF	CITATIONS
37	Stepping into the Equatorward Boundary of the Auroral Oval: preliminary results of multi scale statistical analysis. Annals of Geophysics, 2019, 61, .	1.0	7
38	Status and performance of the High Energy Particle Detector (HEPD) on-board the CSES-01 satellite. , 2019, , .		0
39	Adaptive Local Iterative Filtering: A Promising Technique for the Analysis of Nonstationary Signals. Journal of Geophysical Research: Space Physics, 2018, 123, 1031-1046.	2.4	40
40	Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L'Aquila earthquake. Annales Geophysicae, 2018, 36, 1483-1493.	1.6	19
41	The response of high latitude ionosphere to the 2015 St. Patrick's day storm from in situ and ground based observations. Advances in Space Research, 2018, 62, 638-650.	2.6	17
42	The response of high latitude ionosphere to the 2015 June 22 storm. Annals of Geophysics, 2018, 61, .	1.0	5
43	Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick's day storm event. Advances in Space Research, 2017, 60, 1807-1816.	2.6	23
44	Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems. Solar Physics, 2017, 292, 1.	2.5	62
45	Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and lonosphere Systems. , 2017, , 225-280.		Ο
46	Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Annales Geophysicae, 2016, 34, 1069-1084.	1.6	25
47	On the transmission of waves at discrete frequencies from the solar wind to the magnetosphere and ground: A case study. Journal of Geophysical Research: Space Physics, 2016, 121, 380-396.	2.4	21
48	On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of sudden impulses. Journal of Geophysical Research: Space Physics, 2016, 121, 6674-6691.	2.4	21
49	Geomagnetically induced currents around the world during the 17 March 2015 storm. Journal of Geophysical Research: Space Physics, 2016, 121, 10,496.	2.4	50
50	Comment on "Statistical analysis of geosynchronous magnetic field perturbations near midnight during sudden commencements―by J.‣. Park et al Journal of Geophysical Research: Space Physics, 2015, 120, 3821-3823.	2.4	1
51	Applying a curlâ€B technique to Swarm vector data to estimate nighttime <i>F</i> region current intensities. Geophysical Research Letters, 2015, 42, 6162-6169.	4.0	8
52	Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and IGRF models. Journal of Geophysical Research: Space Physics, 2014, 119, 2623-2633.	2.4	19
53	Magnetospheric plasma density inferred from field line resonances: Effects of using different magnetic field models. , 2014, , .		13
54	On the propagation of sudden impulses through the magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 115-116, 2-6.	1.6	1

MIRKO PIERSANTI

2

#	Article	IF	CITATIONS
55	Storage and retrieval of ultrametric patterns in a network of CA1 neurons of the hippocampus. P-Adic Numbers, Ultrametric Analysis, and Applications, 2013, 5, 260-277.	0.4	0
56	The 8 June 2000 ULF wave activity: A case study. Journal of Geophysical Research, 2012, 117, .	3.3	20
57	Sudden impulses at geosynchronous orbit and at ground. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 61-76.	1.6	20
58	Precise Measurement of the Gas Gain of a Multi-Wire Proportional Chamber with Cosmic Rays. , 2010, , .		0
59	Analysis of geomagnetic sudden impulses at low latitudes. Journal of Geophysical Research, 2009, 114, .	3.3	12
60	An analysis of sudden impulses at geosynchronous orbit. Journal of Geophysical Research, 2008, 113, .	3.3	36
61	Long-period oscillations at discrete frequencies: A comparative analysis of ground, magnetospheric, and interplanetary observations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	21
62	Correction to "Long-period oscillations at discrete frequencies: A comparative analysis of ground, magnetospheric, and interplanetary observations― Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	0
63	Sudden commencement event of 17 April 2002: Aspects of the geomagnetic response at low latitudes. Journal of Geophysical Research, 2005, 110, .	3.3	4

64 Sudden Impulses in the Magnetosphere and at Ground. , 0, , .