Vladimir Majerciak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9920968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. Journal of Virology, 2022, 96, JVI0178221.	3.4	6
2	HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. International Journal of Molecular Sciences, 2022, 23, 4943.	4.1	22
3	KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Reports, 2022, 39, 110788.	6.4	23
4	Genome-wide regulation of KSHV RNA splicing by viral RNA-binding protein ORF57. PLoS Pathogens, 2022, 18, e1010311.	4.7	5
5	SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell and Bioscience, 2021, 11, 136.	4.8	140
6	Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathogens, 2021, 17, e1009812.	4.7	12
7	Oncogenic HPV promotes the expression of the long noncoding RNA Inc-FANCI-2 through E7 and YY1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
8	Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathogens, 2020, 16, e1008206.	4.7	27
9	KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Research, 2019, 47, 9368-9385.	14.5	29
10	CRISPR/Cas9-Mediated Knockout and <i>In Situ</i> Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. Journal of Virology, 2019, 93, .	3.4	24
11	Papillomavirus can be transmitted through the blood and produce infections in blood recipients: Evidence from two animal models. Emerging Microbes and Infections, 2019, 8, 1108-1121.	6.5	31
12	Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virologica Sinica, 2019, 34, 135-161.	3.0	55
13	HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein. Virologica Sinica, 2019, 34, 211-221.	3.0	17
14	A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. Journal of Virology, 2019, 93, .	3.4	12
15	Detection of Viral RNA Splicing in Diagnostic Virology. , 2018, , 345-402.		1
16	The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathogens, 2018, 14, e1007232.	4.7	15
17	Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy. Journal of General Virology, 2017, 98, 2520-2529.	2.9	22
18	KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS Pathogens, 2017, 13, e1006677.	4.7	59

#	Article	IF	CITATIONS
19	The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathogens, 2017, 13, e1006715.	4.7	47
20	CLIPâ€seq to Identify KSHV ORF57â€Binding RNA in Host B Cells. Current Protocols in Microbiology, 2016, 41, 1E.11.1-1E.11.18.	6.5	3
21	PAâ€seq for Global Identification of RNA Polyadenylation Sites of Kaposi's Sarcoma–Associated Herpesvirus Transcripts. Current Protocols in Microbiology, 2016, 41, 14E.7.1-14E.7.18.	6.5	2
22	Cell Type- and Tissue Context-dependent Nuclear Distribution of Human Ago2. Journal of Biological Chemistry, 2016, 291, 2302-2309.	3.4	33
23	Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms. Virology, 2016, 488, 81-87.	2.4	6
24	Stability of Structured Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Is Regulated by Protein Phosphorylation and Homodimerization. Journal of Virology, 2015, 89, 3256-3274.	3.4	30
25	KSHV ORF57, a Protein of Many Faces. Viruses, 2015, 7, 604-633.	3.3	39
26	Multiple Regions of Kaposi's Sarcoma-Associated Herpesvirus ORF59 RNA are Required for Its Expression Mediated by Viral ORF57 and Cellular RBM15. Viruses, 2015, 7, 496-510.	3.3	17
27	Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing. Rna, 2014, 20, 1747-1758.	3.5	37
28	Detection of Viral RNA Splicing in Diagnostic Virology. , 2013, , 693-748.		4
29	A Viral Genome Landscape of RNA Polyadenylation from KSHV Latent to Lytic Infection. PLoS Pathogens, 2013, 9, e1003749.	4.7	49
30	Interplay between Polyadenylate-Binding Protein 1 and Kaposi's Sarcoma-Associated Herpesvirus ORF57 in Accumulation of Polyadenylated Nuclear RNA, a Viral Long Noncoding RNA. Journal of Virology, 2013, 87, 243-256.	3.4	49
31	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Is Not a Bona Fide Export Factor. Journal of Virology, 2012, 86, 13089-13094.	3.4	14
32	Stability of a Long Noncoding Viral RNA Depends on a 9-Nt Core Element at the RNA 5' End to Interact with Viral ORF57 and Cellular PABPC1. International Journal of Biological Sciences, 2011, 7, 1145-1160.	6.4	64
33	Kaposi's sarcomaâ€associated herpesviral ILâ€6 and human ILâ€6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. Journal of Pathology, 2011, 225, 378-389.	4.5	59
34	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Promotes Escape of Viral and Human Interleukin-6 from MicroRNA-Mediated Suppression. Journal of Virology, 2011, 85, 2620-2630.	3.4	67
35	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Interacts with Cellular RNA Export Cofactors RBM15 and OTT3 To Promote Expression of Viral ORF59. Journal of Virology, 2011, 85, 1528-1540.	3.4	39
36	Requirement of UAP56, URH49, RBM15, and OTT3 in the expression of Kaposi sarcoma-associated herpesvirus ORF57. Virology, 2010, 407, 206-212.	2.4	10

#	Article	IF	CITATIONS
37	Caspase-7 Cleavage of Kaposi Sarcoma-associated Herpesvirus ORF57 Confers a Cellular Function against Viral Lytic Gene Expression. Journal of Biological Chemistry, 2010, 285, 11297-11307.	3.4	29
38	MicroRNAâ€204/211 alters epithelial physiology. FASEB Journal, 2010, 24, 1552-1571.	0.5	218
39	Kaposi's sarcoma-associated herpesvirus ORF57 promotes escape of viral and human IL6 RNAs from microRNA-mediated suppression. Infectious Agents and Cancer, 2010, 5, .	2.6	0
40	Kaposi's sarcoma-associated herpesvirus ORF57 in viral RNA processing. Frontiers in Bioscience - Landmark, 2009, Volume, 1516.	3.0	36
41	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Functions as a Viral Splicing Factor and Promotes Expression of Intron-Containing Viral Lytic Genes in Spliceosome-Mediated RNA Splicing. Journal of Virology, 2008, 82, 2792-2801.	3.4	70
42	Targeted Disruption of Kaposi's Sarcoma-Associated Herpesvirus ORF57 in the Viral Genome Is Detrimental for the Expression of ORF59, K8α, and K8.1 and the Production of Infectious Virus. Journal of Virology, 2007, 81, 1062-1071.	3.4	76
43	Gene Structure and Expression of Kaposi's Sarcoma-Associated Herpesvirus ORF56, ORF57, ORF58, and ORF59. Journal of Virology, 2006, 80, 11968-11981.	3.4	57
44	Structural and Functional Analyses of Kaposi Sarcoma-associated Herpesvirus ORF57 Nuclear Localization Signals in Living Cells. Journal of Biological Chemistry, 2006, 281, 28365-28378.	3.4	67
45	Construction and Characterization of Marek's Disease Viruses Having Green Fluorescent Protein Expression Tied Directly or Indirectly to Phosphoprotein 38 Expression. Avian Diseases, 2004, 48, 471-487.	1.0	12
46	Suppression subtractive hybridisation to isolate differentially expressed genes involved in invasiveness of melanoma cell line cultured under different conditions. International Journal of Oncology, 2002, 20, 501.	3.3	2
47	Marek's Disease Virus (MDV) Encodes an Interleukin-8 Homolog (vIL-8): Characterization of the vIL-8 Protein and a vIL-8 Deletion Mutant MDV. Journal of Virology, 2001, 75, 5159-5173.	3.4	152
48	The genome of herpesvirus of turkeys: comparative analysis with Marek's disease viruses. Journal of General Virology, 2001, 82, 1123-1135.	2.9	60