Vincent H Tam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/991354/publications.pdf

Version: 2024-02-01

104 papers

4,640 citations

147801 31 h-index 106344 65 g-index

108 all docs 108 docs citations

108 times ranked 4699 citing authors

#	ARTICLE	lF	CITATIONS
1	International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Antiâ€infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious	2.6	545
2	Impact of multidrug-resistant <i>Pseudomonas aeruginosa</i> infection on patient outcomes. Expert Review of Pharmacoeconomics and Outcomes Research, 2010, 10, 441-451.	1.4	336
3	New β-Lactam–β-Lactamase Inhibitor Combinations. Clinical Microbiology Reviews, 2020, 34, .	13.6	261
4	Pharmacodynamics of Polymyxin B against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2005, 49, 3624-3630.	3.2	198
5	Optimization of Meropenem Minimum Concentration/MIC Ratio To Suppress In Vitro Resistance of <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2005, 49, 4920-4927.	3.2	178
6	Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. Journal of Antimicrobial Chemotherapy, 2008, 62, 168-171.	3.0	146
7	Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Review of Anti-Infective Therapy, 2007, 5, 811-821.	4.4	142
8	Impact of Multidrug-Resistant <i>Pseudomonas aeruginosa</i> Bacteremia on Patient Outcomes. Antimicrobial Agents and Chemotherapy, 2010, 54, 3717-3722.	3.2	138
9	The Relationship between Quinolone Exposures and Resistance Amplification Is Characterized by an Inverted U: a New Paradigm for Optimizing Pharmacodynamics To Counterselect Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 744-747.	3.2	124
10	Generating Robust and Informative Nonclinical <i>In Vitro</i> and <i>In Vivo</i> Bacterial Infection Model Efficacy Data To Support Translation to Humans. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	124
11	Prevalence, Resistance Mechanisms, and Susceptibility of Multidrug-Resistant Bloodstream Isolates of <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 1160-1164.	3.2	122
12	Modelling time–kill studies to discern the pharmacodynamics of meropenem. Journal of Antimicrobial Chemotherapy, 2005, 55, 699-706.	3.0	110
13	Outcomes of Bacteremia due to Pseudomonas aeruginosa with Reduced Susceptibility to Piperacillin-Tazobactam: Implications on the Appropriateness of the Resistance Breakpoint. Clinical Infectious Diseases, 2008, 46, 862-867.	5.8	106
14	Comparative Pharmacodynamics of Gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2006, 50, 2626-2631.	3.2	98
15	Pharmacokinetics of polymyxin B1 in patients with multidrug-resistant Gram-negative bacterial infections. Diagnostic Microbiology and Infectious Disease, 2008, 60, 163-167.	1.8	77
16	Determining \hat{l}^2 -lactam exposure threshold to suppress resistance development in Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2017, 72, 1421-1428.	3.0	72
17	Nephrotoxicity of continuous versus intermittent infusion of vancomycin in outpatient parenteral antimicrobial therapy. International Journal of Antimicrobial Agents, 2009, 34, 570-574.	2.5	58
18	Variability of polymyxin B major components in commercial formulations. International Journal of Antimicrobial Agents, 2010, 35, 308-310.	2.5	58

#	Article	IF	CITATIONS
19	Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. International Journal of Antimicrobial Agents, 2015, 45, 541-544.	2.5	58
20	Assessment of Minocycline and Polymyxin B Combination against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2015, 59, 2720-2725.	3.2	56
21	Population Pharmacokinetics of Polymyxin B. Clinical Pharmacology and Therapeutics, 2018, 104, 534-538.	4.7	55
22	Pharmacodynamic Modeling of Aminoglycosides against <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> : Identifying Dosing Regimens To Suppress Resistance Development. Antimicrobial Agents and Chemotherapy, 2008, 52, 3987-3993.	3.2	52
23	Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2011, 66, 1311-1317.	3.0	49
24	Risk factors for nephrotoxicity onset associated with polymyxin B therapy. Journal of Antimicrobial Chemotherapy, 2015, 70, 1903-1907.	3.0	48
25	Uptake of Polymyxin B into Renal Cells. Antimicrobial Agents and Chemotherapy, 2014, 58, 4200-4202.	3.2	47
26	Dosing and Pharmacokinetics of Polymyxin B in Patients with Renal Insufficiency. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	47
27	Polymyxin B: a new strategy for multidrug-resistant Gram-negative organisms. Expert Opinion on Investigational Drugs, 2008, 17, 661-668.	4.1	41
28	Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagnostic Microbiology and Infectious Disease, 2007, 58, 309-314.	1.8	39
29	Mathematical formulation of additivity for antimicrobial agents. Diagnostic Microbiology and Infectious Disease, 2006, 55, 319-325.	1.8	36
30	Characterization of Polymyxin B Biodistribution and Disposition in an Animal Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 1029-1034.	3.2	35
31	Novel Approach to Characterization of Combined Pharmacodynamic Effects of Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 2004, 48, 4315-4321.	3.2	34
32	Quantitative determination of dopamine in human plasma by a highly sensitive LC–MS/MS assay: Application in preterm neonates. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 227-231.	2.8	34
33	A Novel Approach to Pharmacodynamic Assessment of Antimicrobial Agents: New Insights to Dosing Regimen Design. PLoS Computational Biology, 2011, 7, e1001043.	3.2	32
34	The complexity of minocycline serum protein binding. Journal of Antimicrobial Chemotherapy, 2017, 72, 1632-1634.	3.0	32
35	Impact of Sample Size on the Performance of Multiple-Model Pharmacokinetic Simulations. Antimicrobial Agents and Chemotherapy, 2006, 50, 3950-3952.	3.2	31
36	Quantitative Assessment of Combination Antimicrobial Therapy against Multidrug-Resistant <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 2898-2904.	3.2	31

#	Article	IF	CITATIONS
37	Mathematical modelling response of Pseudomonas aeruginosa to meropenem. Journal of Antimicrobial Chemotherapy, 2007, 60, 1302-1309.	3.0	28
38	Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	26
39	Optimal Piperacillin-Tazobactam Dosing Strategies against Extended-Spectrum- \hat{l}^2 -Lactamase-Producing <i>Enterobacteriaceae</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	26
40	Quantitative Assessment of Combination Antimicrobial Therapy against Multidrugâ€Resistant Bacteria in a Murine Pneumonia Model. Journal of Infectious Diseases, 2010, 201, 889-897.	4.0	25
41	Comparative Pharmacokinetic Profiling of Different Polymyxin B Components. Antimicrobial Agents and Chemotherapy, 2016, 60, 6980-6982.	3.2	25
42	Comparison of \hat{l}^2 -lactams in counter-selecting resistance of Pseudomonas aeruginosa. Diagnostic Microbiology and Infectious Disease, 2005, 52, 145-151.	1.8	23
43	A model to predict mortality following Pseudomonas aeruginosa bacteremia. Diagnostic Microbiology and Infectious Disease, 2012, 72, 97-102.	1.8	23
44	Optimizing Pharmacokinetics-Pharmacodynamics of Antimicrobial Management in Patients with Sepsis: A Review. Journal of Infectious Diseases, 2020, 222, S132-S141.	4.0	22
45	Killing of Escherichia coli by \hat{l}^2 -lactams at different inocula. Diagnostic Microbiology and Infectious Disease, 2009, 64, 166-171.	1.8	19
46	Pharmacokinetics of ertapenem in outpatients with complicated urinary tract infections. Journal of Antimicrobial Chemotherapy, 2014, 69, 2517-2521.	3.0	19
47	Pharmacokinetics and Pharmacodynamics of Minocycline against Acinetobacter baumannii in a Neutropenic Murine Pneumonia Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	19
48	Analytical and Functional Determination of Polymyxin B Protein Binding in Serum. Antimicrobial Agents and Chemotherapy, 2015, 59, 7121-7123.	3.2	18
49	<i>In Vivo</i> Resistance to Ceftolozane/Tazobactam in <i>Pseudomonas aeruginosa</i> Arising by AmpC- and Non-AmpC-Mediated Pathways. Case Reports in Infectious Diseases, 2018, 2018, 1-4.	0.5	18
50	Prolonged Versus Intermittent Infusion of \hat{I}^2 -Lactam Antibiotics: A Systematic Review and Meta-Regression of Bacterial Killing in Preclinical Infection Models. Clinical Pharmacokinetics, 2020, 59, 1237-1250.	3.5	18
51	Optimizing pharmacokinetics/pharmacodynamics of \hat{l}^2 -lactam/ \hat{l}^2 -lactamase inhibitor combinations against high inocula of ESBL-producing bacteria. Journal of Antimicrobial Chemotherapy, 2021, 76, 179-183.	3.0	18
52	In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagnostic Microbiology and Infectious Disease, 2009, 64, 427-433.	1.8	17
53	Development and validation of a highly sensitive LC–MS/MS assay for the quantification of arginine vasopressin in human plasma and urine: Application in preterm neonates and child. Journal of Pharmaceutical and Biomedical Analysis, 2014, 99, 67-73.	2.8	17
54	Identification of optimal renal dosage adjustments for high-dose extended-infusion cefepime dosing regimens in hospitalized patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 877-881.	3.0	17

#	Article	IF	CITATIONS
55	Ertapenem in outpatient parenteral antimicrobial therapy for complicated urinary tract infections. Journal of Chemotherapy, 2017, 29, 25-29.	1.5	17
56	Efficacy of Ceftaroline against Methicillin-Susceptible Staphylococcus aureus Exhibiting the Cefazolin High-Inoculum Effect in a Rat Model of Endocarditis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
57	Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia. Diagnostic Microbiology and Infectious Disease, 2009, 63, 279-285.	1.8	15
58	Validation of a Model To Predict the Risk of Nephrotoxicity in Patients Receiving Colistin. Antimicrobial Agents and Chemotherapy, 2014, 58, 6946-6948.	3.2	15
59	An institutional review of antimicrobial stewardship interventions. Journal of Global Antimicrobial Resistance, 2016, 6, 75-77.	2.2	15
60	Independent predictors for mortality in patients with positive Stenotrophomonas maltophilia cultures. Annals of the Academy of Medicine, Singapore, 2008, 37, 826-30.	0.4	14
61	Predicting the risk of nephrotoxicity in patients receiving colistimethate sodium: a multicentre, retrospective, cohort study: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 3585-3587.	3.0	13
62	Toxicity in Patients. Advances in Experimental Medicine and Biology, 2019, 1145, 289-304.	1.6	13
63	<i>In Vitro</i> Ceftriaxone Susceptibility in Methicillin-Susceptible Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2015, 59, 1370-1370.	3.2	12
64	What the Clinical Microbiologist Should Know About Pharmacokinetics/Pharmacodynamics in the Era of Emerging Multidrug Resistance. Clinics in Laboratory Medicine, 2019, 39, 473-485.	1.4	12
65	Emergence of KPC-producing Klebsiella pneumoniae in Texas. Diagnostic Microbiology and Infectious Disease, 2011, 69, 234-235.	1.8	10
66	Pharmacokinetics and safety of intravesicular cidofovir in allogeneic HSCT recipients. Journal of Antimicrobial Chemotherapy, 2016, 71, 727-730.	3.0	10
67	An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. Journal of Infection and Chemotherapy, 2014, 20, 224-227.	1.7	9
68	The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Francisella tularensis SCHU S4 Infection in BALB/c Mice and Cynomolgus Macaques. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	9
69	Characterization of Amikacin Drug Exposure and Nephrotoxicity in an Animal Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	9
70	Evaluation of Urinary KIM-1 for Prediction of Polymyxin B-Induced Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
71	Outcomes of empiric aminoglycoside monotherapy for Pseudomonas aeruginosa bacteremia. Diagnostic Microbiology and Infectious Disease, 2019, 93, 346-348.	1.8	8
72	A robust LC–MS/MS method for amikacin: application to cellular uptake and pharmacokinetic studies. Bioanalysis, 2020, 12, 445-454.	1.5	8

#	Article	IF	CITATIONS
73	An integrated pharmacoeconomic approach to antimicrobial formulary decision-making. American Journal of Health-System Pharmacy, 2006, 63, 735-739.	1.0	7
74	Transcriptional profiles of pulmonary innate immune responses to isogenic antibioticâ€susceptible and multidrugâ€resistant ⟨i⟩Pseudomonas aeruginosa⟨/i⟩. Microbiology and Immunology, 2018, 62, 291-294.	1.4	7
75	Prevalence of extended-spectrum beta-lactamase and carbapenemase-producing bloodstream isolates of <i>Klebsiella pneumoniae</i> in a tertiary care hospital. Journal of Chemotherapy, 2018, 30, 115-119.	1.5	7
76	Outpatient Subcutaneous Antimicrobial Therapy (OSCAT) as a Measure to Improve the Quality and Efficiency of Healthcare Delivery for Patients With Serious Bacterial Infections. Frontiers in Medicine, 2020, 7, 585658.	2.6	7
77	Modeling heterogeneous bacterial populations exposed to antibiotics: The logisticâ€dynamics case. AICHE Journal, 2015, 61, 2385-2393.	3.6	6
78	Impact of hyperglycemia on outcomes of patients with Pseudomonas aeruginosa bacteremia. Diagnostic Microbiology and Infectious Disease, 2016, 84, 155-158.	1.8	6
79	Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. ELife, 2021, 10, .	6.0	6
80	Discerning in vitro pharmacodynamics from OD measurements: A model-based approach. Computers and Chemical Engineering, 2022, 158, 107617.	3.8	6
81	In Vitro Pharmacodynamics of AZD5206 against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 1062-1064.	3.2	5
82	Kidney Injury Associated with Telavancin Dosing Regimen in an Animal Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 2930-2933.	3.2	5
83	Ceftolozane/tazobactam activity against meropenem-non-susceptible Pseudomonas aeruginosa bloodstream infection isolates. Journal of Global Antimicrobial Resistance, 2017, 11, 154-155.	2.2	5
84	Efficacy of Telavancin Alone and in Combination with Ampicillin in a Rat Model of Enterococcus faecalis Endocarditis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	4
85	Performance of Population Pharmacokinetic Models in Predicting Polymyxin B Exposures. Microorganisms, 2020, 8, 1814.	3.6	4
86	Simultaneous in vitro simulation of multiple antimicrobial agents with different elimination half-lives in a pre-clinical infection model. Computers and Chemical Engineering, 2021, 155, 107540.	3.8	4
87	Reply to "Measuring Polymyxin Uptake by Renal Tubular Cells: Is BODIPY-Polymyxin B an Appropriate Probe?― Antimicrobial Agents and Chemotherapy, 2014, 58, 6339-6339.	3.2	3
88	Predictive performance of pharmacokinetic models for outpatients receiving vancomycin continuous infusion. International Journal of Antimicrobial Agents, 2014, 43, 197-199.	2.5	3
89	Real life experience with ceftolozane/tazobactam therapy for <i>Pseudomonas aeruginosa</i> bacteremia. Journal of Chemotherapy, 2021, 33, 595-597.	1.5	3
90	<i>Pseudomonas aeruginosa</i> treatment and transmission reduction. Expert Review of Anti-Infective Therapy, 2013, 11, 831-837.	4.4	2

#	Article	lF	CITATIONS
91	MIC profiling of ceftazidime/avibactam against two carbapenemase-producing Klebsiella pneumoniae isolates. Journal of Global Antimicrobial Resistance, 2020, 23, 385-387.	2.2	2
92	Local Tissue Response to Subcutaneous Administration of Ceftriaxone in an Animal Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
93	Experimental Validation of a Mathematical Framework to Simulate Antibiotics with Distinct Half-Lives Concurrently in an In Vitro Model. Antibiotics, 2021, 10, 1256.	3.7	2
94	In vitro activity of tigecycline and proteomic analysis of tigecycline adaptation strategies in clinical Enterococcus faecalis isolates from China. Journal of Global Antimicrobial Resistance, 2022, 30, 66-74.	2.2	2
95	Comparative performance of different stochastic methods to simulate drug exposure and variability in a population. Diagnostic Microbiology and Infectious Disease, 2006, 56, 185-188.	1.8	1
96	Mathematical Model To Quantify the Effects of Risk Factors on Carbapenem-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2014, 58, 5239-5244.	3.2	1
97	An integrated approach to evaluate different tetracycline derivatives for formulary decisions. American Journal of Health-System Pharmacy, 2022, 79, 467-471.	1.0	1
98	Hydrolytic activity of KPC-producing <i>Klebsiella pneumoniae</i> clinical isolates. Journal of Chemotherapy, 2022, 34, 345-346.	1.5	1
99	Clinical outcomes of cystic fibrosis patients with Pseudomonas aeruginosa bloodstream infection. Journal of Global Antimicrobial Resistance, 2021, , .	2.2	1
100	Pharmacokinetic/pharmacodynamic antimicrobial individualization and optimization strategies. Current Infectious Disease Reports, 2008, 10, 9-13.	3.0	0
101	Dosing and Pharmacokinetics of Polymyxin B in Renal Insufficiency. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
102	The impact of serum protein binding on bacterial killing of minocycline. Journal of Global Antimicrobial Resistance, 2020, 21, 252-254.	2,2	0
103	Validation of Vancomycin Dosing Guidance During Transition of Care. Journal of Clinical Pharmacology, 2021, 61, 806-809.	2.0	0
104	Case Commentary: Novel Therapy for Multidrug-Resistant Acinetobacter baumannii Infection. Antimicrobial Agents and Chemotherapy, 2021, , AAC0199621.	3.2	0