Claudio Punzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99083/publications.pdf

Version: 2024-02-01

411340 445137 1,947 35 20 33 h-index citations g-index papers 36 36 36 2846 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118479119.	3.3	8
2	HK2 Mediated Glycolytic Metabolism in Mouse Photoreceptors Is Not Required to Cause Late Stage Age-Related Macular Degeneration-Like Pathologies. Biomolecules, 2021, 11, 871.	1.8	5
3	Ocular Inflammation with Anti-Vascular Endothelial Growth Factor Treatments. Human Gene Therapy, 2021, 32, 639-641.	1.4	2
4	Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Human Gene Therapy, 2021, 32, 649-666.	1.4	5
5	Gene therapy in animal models. , 2020, , 297-311.		О
6	Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13094-13104.	3.3	61
7	YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression. Cell Reports, 2019, 29, 3200-3211.e4.	2.9	45
8	Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa. Cell Reports, 2018, 23, 2629-2642.	2.9	88
9	Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection. Human Gene Therapy, 2017, 28, 464-481.	1.4	19
10	Loss of the cone-enriched does not affect secondary cone death in retinitis pigmentosa. Molecular Vision, 2017, 23, 944-951.	1.1	4
11	Advances in Gene Therapy for Diseases of the Eye. Human Gene Therapy, 2016, 27, 563-579.	1.4	69
12	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	3.7	98
13	Quantifying the metabolic contribution to photoreceptor death in retinitis pigmentosa via a mathematical model. Journal of Theoretical Biology, 2016, 408, 75-87.	0.8	22
14	Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy. Oncotarget, 2016, 7, 9620-9633.	0.8	25
15	Gene therapy approaches for the treatment of retinal disorders. Discovery Medicine, 2016, 22, 221-229.	0.5	8
16	Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Experimental Eye Research, 2015, 135, 1-13.	1,2	26
17	Sugar for sight. Nature, 2015, 522, 428-429.	13.7	15
18	Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. Journal of Clinical Investigation, 2015, 125, 1446-1458.	3.9	126

#	Article	IF	CITATIONS
19	mTORC1 sustains vision in retinitis pigmentosa. Oncotarget, 2015, 6, 16786-16787.	0.8	10
20	Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons. Cell Cycle, 2014, 13, 2526-2541.	1.3	21
21	Retinal Gene Delivery by rAAV and DNA Electroporation. Current Protocols in Microbiology, 2013, 28, Unit 14D.4.	6.5	29
22	Transcription factor <i>Olig2</i> defines subpopulations of retinal progenitor cells biased toward specific cell fates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7882-7887.	3.3	128
23	Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame?. Journal of Biological Chemistry, 2012, 287, 1642-1648.	1.6	161
24	Storeâ€operated channels regulate intracellular calcium in mammalian rods. Journal of Physiology, 2012, 590, 3465-3481.	1.3	41
25	Localization and phenotype-specific expression of ryanodine calcium release channels in C57BL6 and DBA/2J mouse strains. Experimental Eye Research, 2011, 93, 700-709.	1.2	24
26	Plasticity of TRPM1 expression and localization in the wild type and degenerating mouse retina. Vision Research, 2010, 50, 2460-2465.	0.7	13
27	Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nature Neuroscience, 2009, 12, 44-52.	7.1	443
28	Ultrasoundâ€guided in utero injections allow studies of the development and function of the eye. Developmental Dynamics, 2008, 237, 1034-1042.	0.8	29
29	Temporal requirement of the alternative-splicing factor <i>Sfrs1</i> for the survival of retinal neurons. Development (Cambridge), 2008, 135, 3923-3933.	1.2	15
30	Cross-regulatory protein-protein interactions between Hox and Pax transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13439-13444.	3.3	44
31	Cellular Responses to Photoreceptor Death in therd1Mouse Model of Retinal Degeneration. , 2007, 48, 849.		58
32	Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genomics, 2007, 8, 153.	1.2	61
33	A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nature Biotechnology, 2006, 24, 832-840.	9.4	144
34	Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster. Development (Cambridge), 2004, 131, 3943-3953.	1.2	44
35	The eyeless homeodomain is dispensable for eye development in Drosophila. Genes and Development, 2001, 15, 1716-1723.	2.7	53