
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9902645/publications.pdf Version: 2024-02-01

Ιοςέρη Υλιλι

#	Article	IF	CITATIONS
1	Reversal of prenatal heroin-induced alterations in hippocampal gene expression via transplantation of mesenchymal stem cells during adulthood. Neurotoxicology and Teratology, 2022, 90, 107063.	2.4	3
2	Paternal and/or maternal preconception-induced neurobehavioral teratogenicity in animal and human models. Brain Research Bulletin, 2021, 174, 103-121.	3.0	6
3	Implementation of a six-around-one optical probe based on diffuse light spectroscopy for study of cerebral properties in a murine mouse model of autism spectrum disorder. Applied Optics, 2020, 59, 6809.	1.8	4
4	Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior?. International Journal of Molecular Sciences, 2019, 20, 5278.	4.1	20
5	Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Research Bulletin, 2019, 150, 328-342.	3.0	5
6	S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicology and Teratology, 2019, 71, 64-74.	2.4	39
7	ls post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reproductive Toxicology, 2018, 80, 92-104.	2.9	7
8	Mesenchymal Stem Cells Can Prevent Alterations in Behavior and Neurogenesis Induced by Aß25–35 Administration. Journal of Molecular Neuroscience, 2015, 55, 1006-1013.	2.3	14
9	An avian model for ascertaining the mechanisms of organophosphate neuroteratogenicity and its therapy with mesenchymal stem cell transplantation Neurotoxicology and Teratology, 2015, 50, 73-81.	2.4	13
10	The teratogenicity and behavioral teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-butyl Phthalate (DBP) in a chick model. Neurotoxicology and Teratology, 2012, 34, 56-62.	2.4	26
11	Reversal of chlorpyrifos neurobehavioral teratogenicity in mice by allographic transplantation of adult subventricular zoneâ€derived neural stem cells. Journal of Neuroscience Research, 2011, 89, 1185-1193.	2.9	17
12	A mechanism-based complementary screening approach for the amelioration and reversal of neurobehavioral teratogenicity. Neurotoxicology and Teratology, 2010, 32, 109-113.	2.4	6
13	Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicology and Teratology, 2010, 32, 182-186.	2.4	43
14	An avian model for the reversal of neurobehavioral teratogenicity with neural stem cells. Neurotoxicology and Teratology, 2010, 32, 481-488.	2.4	5
15	Survival, differentiation, and reversal of heroin neurobehavioral teratogenicity in mice by transplanted neural stem cells derived from embryonic stem cells. Journal of Neuroscience Research, 2010, 88, 315-323.	2.9	11
16	Neurobehavioral teratogenicity of sarin in an avian model. Neurotoxicology and Teratology, 2009, 31, 406-412.	2.4	8
17	Reversal of chlorpyrifos neurobehavioral teratogenicity in mice by nicotine administration and neural stem cell transplantation. Behavioural Brain Research, 2009, 205, 499-504.	2.2	16
18	Developmental neurotoxic effects of chlorpyrifos on acetylcholine and serotonin pathways in an avian model. Neurotoxicology and Teratology, 2008, 30, 433-439.	2.4	33

#	Article	IF	CITATIONS
19	Exposure of Developing Chicks to Perfluorooctanoic Acid Induces Defects in Prehatch and Early Posthatch Development. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 131-133.	2.3	30
20	Reversal of heroin neurobehavioral teratogenicity by grafting of neural progenitors. Journal of Neurochemistry, 2007, 104, 071115163504002-???.	3.9	16
21	Disruption of the development of cholinergic-induced translocation/activation of PKC isoforms after prenatal heroin exposure. Brain Research Bulletin, 2006, 69, 174-181.	3.0	10
22	Mechanism-Based Approaches for the Reversal of Drug Neurobehavioral Teratogenicity. Annals of the New York Academy of Sciences, 2006, 1074, 659-671.	3.8	8
23	A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity. Neurotoxicology and Teratology, 2005, 27, 65-71.	2.4	12
24	Nicotine Therapy in Adulthood Reverses the Synaptic and Behavioral Deficits Elicited by Prenatal Exposure to Phenobarbital. Neuropsychopharmacology, 2005, 30, 156-165.	5.4	29
25	Convergent Effects on Cell Signaling Mechanisms Mediate the Actions of Different Neurobehavioral Teratogens: Alterations in Cholinergic Regulation of Protein Kinase C in Chick and Avian Models. Annals of the New York Academy of Sciences, 2004, 1025, 595-601.	3.8	32
26	Cholinergic synaptic signaling mechanisms underlying behavioral teratogenicity: Effects of nicotine, chlorpyrifos, and heroin converge on protein kinase C translocation in the intermedial part of the hyperstriatum ventrale and on imprinting behavior in an avian model. Journal of Neuroscience Research, 2004, 78, 499-507.	2.9	32
27	Prenatal heroin exposure alters cholinergic receptor stimulated activation of the PKC\$beta;II and PKC\$gamma; isoforms. Brain Research Bulletin, 2004, 63, 339-339.	3.0	0
28	Altered localization of choline transporter sites in the mouse hippocampus after prenatal heroin exposure. Brain Research Bulletin, 2004, 63, 25-32.	3.0	18
29	Prenatal heroin exposure alters cholinergic receptor stimulated activation of the PKCβII and PKCγ isoforms. Brain Research Bulletin, 2004, 63, 339-349.	3.0	22
30	Heroin neuroteratogenicity: delayed-onset deficits in catecholaminergic synaptic activity. Brain Research, 2003, 984, 189-197.	2.2	8
31	Alterations in PKCÎ ³ in the mouse hippocampus after prenatal exposure to heroin: a link from cell signaling to behavioral outcome. Developmental Brain Research, 2003, 140, 117-125.	1.7	28
32	Functional changes after prenatal opiate exposure related to opiate receptors' regulated alterations in cholinergic innervation. International Journal of Neuropsychopharmacology, 2003, 6, 253-265.	2.1	36
33	Cell Signaling as a Target and Underlying Mechanism for Neurobehavioral Teratogenesis. Annals of the New York Academy of Sciences, 2002, 965, 473-478.	3.8	54
34	Heroin neuroteratogenicity: targeting adenylyl cyclase as an underlying biochemical mechanism. Developmental Brain Research, 2001, 132, 69-79.	1.7	13
35	The Relationship between Neural Alterations and Behavioral Deficits after Prenatal Exposure to Heroin. Annals of the New York Academy of Sciences, 2000, 914, 402-411.	3.8	14
36	Neurobehavioral damage to cholinergic systems caused by prenatal exposure to heroin or phenobarbital: cellular mechanisms and the reversal of deficits by neural grafts. Developmental Brain Research, 2000, 122, 125-133.	1.7	56

#	Article	IF	CITATIONS
37	Neural grafting reverses prenatal drug-induced alterations in hippocampal PKC and related behavioral deficits. Developmental Brain Research, 2000, 125, 9-19.	1.7	44
38	Substance abuse studies and prevention efforts among Arabs in the 1990s in Israel, Jordan and the Palestinian Authority-a literature review. Addiction, 1999, 94, 177-198.	3.3	25
39	A method of reducing the opioid withdrawal intensity using progressively increasing doses of naloxone. Journal of Pharmacological and Toxicological Methods, 1999, 42, 115-119.	0.7	0
40	Brain opioid receptor adaptation and expression after prenatal exposure to buprenorphine. Developmental Brain Research, 1998, 111, 35-42.	1.7	31
41	Pre- and postsynaptic alterations in the septohippocampal cholinergic innervations after prenatal exposure to drugs. Brain Research Bulletin, 1998, 46, 203-209.	3.0	42
42	The antinociceptive effect of fluvoxamine. European Neuropsychopharmacology, 1996, 6, 281-284.	0.7	68
43	Inositol phosphate formation in mice prenatally exposed to drugs: Relation to muscarinic receptors and postreceptor effects. Brain Research Bulletin, 1996, 40, 183-186.	3.0	22
44	Neural grafting as a tool for the study and reversal of neurobehavioral birth defects. Pharmacology Biochemistry and Behavior, 1996, 55, 673-681.	2.9	8
45	Embryonic cultures but not embryos transplanted to the mouse's brain grow rapidly without immunosuppression. International Journal of Neuroscience, 1995, 81, 21-26.	1.6	29
46	GTPase activity in mouse hippocampus membranes following prenatal exposure to heroin and phenobarbital. Biochemical Pharmacology, 1995, 50, 127-130.	4.4	1
47	An avian model for the reversal of 6-hydroxydopamine induced rotating behaviour by neural grafting. Neuroscience Letters, 1995, 187, 153-156.	2.1	11
48	Altered brain sensitivity to ethanol in mice after MPTP treatment. Alcohol, 1995, 12, 127-130.	1.7	9
49	Neuron transplantation into mice hippocampus alters sensitivity to barbital narcosis. Brain Research Bulletin, 1995, 38, 93-98.	3.0	1
50	Directional consistency: Determinant of learned maze performance of five mice strains. Behavioural Processes, 1994, 32, 117-131.	1.1	6
51	Reversal of early phenobarbital-induced cholinergic and related behavioral deficits by neuronal grafting. Brain Research Bulletin, 1994, 33, 273-279.	3.0	18
52	Drug Abuse Primary Prevention Research and Programs Among Jewish Youth in Israel: a review. Drugs: Education, Prevention and Policy, 1994, 1, 49-58.	1.3	5
53	Hippocampal cholinergic alterations and related behavioral deficits after early exposure to ethanol. International Journal of Developmental Neuroscience, 1993, 11, 379-385.	1.6	20
54	Hippocampal Î ³ -aminobutyric acid and benzodiazepine receptors after early phenobarbital exposure. Developmental Brain Research, 1993, 74, 111-116.	1.7	6

#	Article	IF	CITATIONS
55	Hippocampal cholinergic alterations and related behavioral deficits after early exposure to phenobarbital. Brain Research Bulletin, 1992, 29, 1-6.	3.0	51
56	Eight-arm maze performance, neophobia, and hippocampal cholinergic alterations after prenatal oxazepam in mice. Brain Research Bulletin, 1992, 29, 609-616.	3.0	18
57	Alterations in hippocampal cholinergic receptors and hippocampal behaviors after early exposure to nicotine. Brain Research Bulletin, 1992, 29, 363-368.	3.0	99
58	Alterations in septohippocampal cholinergic innervations and related behaviors after early exposure to heroin and phencyclidine. Developmental Brain Research, 1992, 69, 207-214.	1.7	47
59	Effect of prenatal and neonatal chronic exposure to phenobarbital on central and peripheral benzodiazepine receptors. Brain Research, 1990, 506, 115-119.	2.2	10
60	Neuromorphological changes in mouse olfactory bulb after neonatal exposure to phenobarbital. Neurotoxicology and Teratology, 1989, 11, 227-230.	2.4	10
61	Studies into the mechanisms of strain differences in hippocampus-related behaviors. Behavior Genetics, 1989, 19, 315-325.	2.1	16
62	Correlated ultrastructural damage between cerebellum cells after early anticonvulsant treatment in mice. International Journal of Developmental Neuroscience, 1989, 7, 15-26.	1.6	11
63	Dopaminergic denervation reverses behavioral deficits induced by prenatal exposure to phenobarbital. Developmental Brain Research, 1989, 48, 255-261.	1.7	21
64	Neuron transplantation reverses phenobarbital-induced behavioral birth defects in mice. International Journal of Developmental Neuroscience, 1988, 6, 409-416.	1.6	39
65	Barbiturate Narcosis and Estrogen Levels in Women. Gynecologic and Obstetric Investigation, 1987, 23, 167-171.	1.6	4
66	Studies on noradrenergic alterations in relation to early phenobarbital-induced behavioral changes. International Journal of Developmental Neuroscience, 1987, 5, 337-344.	1.6	14
67	Normal zinc and iron concentrations in mice after early exposure to phenobarbital. International Journal of Developmental Neuroscience, 1987, 5, 391-398.	1.6	3
68	Alterations in mice dopamine receptor characteristics after early exposure to phenobarbital. Developmental Brain Research, 1986, 30, 57-65.	1.7	8
69	Studies on brain monoamine neurotransmitters in mice after prenatal exposure to barbiturate. Pharmacology Biochemistry and Behavior, 1985, 23, 215-219.	2.9	10
70	Comparison of the Effects of Barbiturate and Ethanol Given to Neonates on the Cerebellar Morphology. Cells Tissues Organs, 1985, 123, 145-147.	2.3	23
71	Long term reduction in eight arm maze performance after early exposure to phenobarbital. International Journal of Developmental Neuroscience, 1985, 3, 223-227.	1.6	36
72	Studies on serotonergic and catecholaminergic systems in mice after prenatal exposure to phenobarbital. International Journal of Developmental Neuroscience, 1985, 3, 477-477.	1.6	0

#	Article	IF	CITATIONS
73	Early phenobarbital-induced alterations in hippocampal acetylcholinesterase activity and behavior. Developmental Brain Research, 1985, 22, 113-123.	1.7	31
74	Effect of Naloxone on Dopamine Uptake and Release in vitro in the Striatum. Neuropsychobiology, 1984, 11, 94-97.	1.9	2
75	The Role of Dopaminergic Mechanisms in Mediating the Central Behavioral Effects of Morphine in Rodents. Neuropsychobiology, 1984, 11, 98-105.	1.9	8
76	Long-term reduction in spontaneous alternations after early exposure to phenobarbital. International Journal of Developmental Neuroscience, 1984, 2, 223-228.	1.6	21
77	Resistance to barbiturate is changed by developmental alteration of dopamine receptor sensitivity. International Journal of Developmental Neuroscience, 1984, 2, 61-64.	1.6	7
78	Isolation reduces midbrain tryptophan hydroxylase activity in mice. Psychopharmacology, 1983, 80, 284-285.	3.1	10
79	Long-lasting effects of early barbiturates on central nervous system and behavior. Neuroscience and Biobehavioral Reviews, 1983, 7, 19-28.	6.1	55
80	Adrenal glucocorticoids as a required factor in barbitura-induced changes in functional tolerance and brainstem tryptophan hydroxylase. Brain Research, 1983, 269, 297-302.	2.2	9
81	Acceleration of wound healing by topical application of honey. American Journal of Surgery, 1983, 145, 374-376.	1.8	195
82	Genetic Factors Influencing Neurosensitivity to Early Phenobarbital Administration in Mice. Cells Tissues Organs, 1983, 115, 40-46.	2.3	5
83	Adrenal Glucocorticoids as a Required Factor in the Development of Ethanol Tolerance in Mice. Neuropsychobiology, 1983, 9, 207-210.	1.9	3
84	Morphological Alterations in the Medial Preoptic Area After Prenatal Administration of Phenobarbital. Cells Tissues Organs, 1982, 114, 347-354.	2.3	4
85	Neuronal Losses in Mice following <i>both</i> Prenatal and Neonatal Exposure to Phenobarbital. Cells Tissues Organs, 1982, 114, 185-192.	2.3	14
86	Accelerated Acquisition of Ethanol Tolerance in Isolated Mice. Neuropsychobiology, 1982, 8, 135-139.	1.9	4
87	Transplacental Effects of Methylmercury Chloride in Mice with Specific Emphasis on the Audiogenic Seizure Response. Developmental Neuroscience, 1982, 5, 216-221.	2.0	9
88	The effect of drugs altering striatal dopamine levels on apomorphine induced stereotypy. Pharmacology Biochemistry and Behavior, 1982, 16, 235-240.	2.9	12
89	Neuronal deficits after neonatal exposure to phenobarbital. Experimental Neurology, 1981, 73, 199-208.	4.1	44
90	Audiogenic Seizures and Neuronal Deficits following Early Exposure to Barbiturate. Developmental Neuroscience, 1981, 4, 345-350.	2.0	27

#	Article	IF	CITATIONS
91	The effect of haloperidol feeding on dopamine receptor number in ten mouse strains. Clinical Genetics, 1981, 19, 353-356.	2.0	12
92	Altered sensitivity to ethanol following prenatal exposure to barbiturate. Psychopharmacology, 1980, 68, 301-303.	3.1	13
93	Neuronal deficits in mice following phenobarbital exposure during various periods in fetal development. Cells Tissues Organs, 1980, 108, 370-373.	2.3	23
94	Prenatal exposure to phenobarbital decreases brain sensitivity to ethanol. Drug and Alcohol Dependence, 1980, 6, 49-50.	3.2	0
95	Delayed maturation of the male cerebral cortex in rats. Cells Tissues Organs, 1979, 104, 335-339.	2.3	24
96	Strain and sex differences in the rat brain. Cells Tissues Organs, 1979, 103, 150-158.	2.3	52
97	Cortexolone antagonizes development of alcohol tolerance in mice. Psychopharmacology, 1979, 64, 123-124.	3.1	17
98	Increased tolerance in mice following prenatal exposure to barbiturate. Psychopharmacology, 1979, 64, 325-327.	3.1	19
99	Neuronal deficits in mice following prenatal exposure to phenobarbital. Experimental Neurology, 1979, 64, 237-244.	4.1	79
100	Normal homing behavior in infant rats despite extensive olfactory bulb granule cell losses. Behavioral Biology, 1978, 24, 539-544.	2.2	10
101	Long term reduction of male agonistic behavior in mice following early exposure to ethanol. Psychopharmacology, 1977, 52, 31-34.	3.1	33
102	Long-term effects of early ethanol on predatory behavior in inbred mice. Physiological Psychology, 1976, 4, 409-411.	0.8	17
103	Effects of early ethanol input on the activities of ethanol-metabolizing enzymes in mice. Biochemical Pharmacology, 1976, 25, 215-217.	4.4	36
104	Increased sensitivity to chronic ethanol in isolated mice. Psychopharmacology, 1976, 46, 185-189.	3.1	28
105	Suppressant Effects of Alcohol on Audiogenic Seizures. Epilepsia, 1975, 16, 491-496.	5.1	9
106	Effects of Aminergic Drugs and Glutamic Acid on Audiogenic Seizures Induced by Early Exposure to Ethanol. Epilepsia, 1975, 16, 67-71.	5.1	24
107	Adrenal glucocorticoids as a required factor in the development of ethanol withdrawal seizures in mice. Brain Research, 1974, 80, 155-159.	2.2	46
108	Assortative mating in mice. II. Strain differences in female mating preference, male preference, and the question of possible sexual selection. Behavior Genetics, 1973, 3, 65-74.	2.1	25

#	Article	IF	CITATIONS
109	Assortative mating in mice. III. Genetic determination of female mating preference. Behavior Genetics, 1973, 3, 75-84.	2.1	17
110	Assortative Mating in Mice and the Incest Taboo. Nature, 1972, 238, 281-282.	27.8	51
111	Assortative mating in mice. I. Female mating preference. Behavior Genetics, 1972, 2, 173-183.	2.1	26