
Danielle J Vugts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of ⁸⁹ Zr-Pembrolizumab PET/CT in Patients With Advanced-Stage Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2022, 63, 362-367.	5.0	44
2	Praluzatamab Ravtansine, a CD166-Targeting Antibody–Drug Conjugate, in Patients with Advanced Solid Tumors: An Open-Label Phase I/II Trial. Clinical Cancer Research, 2022, 28, 2020-2029.	7.0	18
3	Immuno-PET Imaging of Atherosclerotic Plaques with [89Zr]Zr-Anti-CD40 mAb—Proof of Concept. Biology, 2022, 11, 408.	2.8	3
4	The Development of Positron Emission Tomography Tracers for In Vivo Targeting the Kinase Domain of the Epidermal Growth Factor Receptor. Pharmaceuticals, 2022, 15, 450.	3.8	6
5	Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [⁸⁹ Zr]Zr-DFO-PEG ₅ -Tz. Bioconjugate Chemistry, 2022, 33, 956-968.	3.6	2
6	PETâ€CT Imaging of Polymeric Nanoparticle Tumor Accumulation in Patients. Advanced Materials, 2022, 34, e2201043.	21.0	19
7	Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. Journal of Materials Chemistry B, 2021, 9, 410-420.	5.8	17
8	The Role of ⁸⁹ Zr-Immuno-PET in Navigating and Derisking the Development of Biopharmaceuticals. Journal of Nuclear Medicine, 2021, 62, 438-445.	5.0	39
9	Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate for clinical 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 694-707.	6.4	43
10	Fluorine-18 labelled Ruppert–Prakash reagent ([¹⁸ F]Me ₃ SiCF ₃) for the synthesis of ¹⁸ F-trifluoromethylated compounds. Chemical Communications, 2021, 57, 5286-5289.	4.1	8
11	State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjugate Chemistry, 2021, 32, 1315-1330.	3.6	37
12	Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice. EJNMMI Research, 2021, 11, 57.	2.5	6
13	Towards PET imaging of the dynamic phenotypes of microglia. Clinical and Experimental Immunology, 2021, 206, 282-300.	2.6	28
14	The Race for Hydroxamate-Based Zirconium-89 Chelators. Cancers, 2021, 13, 4466.	3.7	23
15	Evaluating N â€difluoromethyltriazolium triflate as a precursor for the synthesis of high molar activity [18 F]fluoroform. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 466-476.	1.0	5
16	Meet the editors: Danielle Vugts. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 489-491.	1.0	0
17	Comparison of analytical methods for antibody conjugates with application in nuclear imaging – Report from the trenches. Nuclear Medicine and Biology, 2021, 102-103, 24-33.	0.6	1

18 State of the art of radiochemistry for 11C and 18F PET tracers., 2021,,.

#	Article	IF	CITATIONS
19	PET Imaging of Purinergic Receptors. , 2021, , 879-889.		1
20	Synthesis and evaluation of [18F]cinacalcet for the imaging of parathyroid hyperplasia. Nuclear Medicine and Biology, 2021, 102-103, 97-105.	0.6	2
21	Novel Thienopyrimidine-Based PET Tracers for P2Y ₁₂ Receptor Imaging in the Brain. ACS Chemical Neuroscience, 2021, 12, 4465-4474.	3.5	15
22	The P2X7 receptor tracer [11C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: a first-in man study. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 379-389.	6.4	44
23	[89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 849-859.	6.4	22
24	In vivo tracking of single cells with PET. Nature Biomedical Engineering, 2020, 4, 765-766.	22.5	6
25	Design, Synthesis, Conjugation, and Reactivity of Novel <i>trans,trans</i> -1,5-Cyclooctadiene-Derived Bioorthogonal Linkers. Bioconjugate Chemistry, 2020, 31, 2201-2210.	3.6	6
26	PET imaging of P2X7R in the experimental autoimmune encephalomyelitis model of multiple sclerosis using [11C]SMW139. Journal of Neuroinflammation, 2020, 17, 300.	7.2	15
27	The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by ⁸⁹ Zr-immuno-PET in xenograft bearing mice. Theranostics, 2020, 10, 5815-5828.	10.0	25
28	Design, Synthesis, Radiosynthesis and Biological Evaluation of Fenretinide Analogues as Anticancer and Metabolic Syndromeâ€Preventive Agents. ChemMedChem, 2020, 15, 1579-1590.	3.2	2
29	Total-Body PET and Highly Stable Chelators Together Enable Meaningful ⁸⁹ Zr-Antibody PET Studies up to 30 Days After Injection. Journal of Nuclear Medicine, 2020, 61, 453-460.	5.0	66
30	Synthesis of [¹⁸ F]Fluoroform with High Molar Activity. European Journal of Organic Chemistry, 2020, 2020, 1177-1185.	2.4	17
31	Altered splenic [Zr]Zr-rituximab uptake in patients with interstitial lung disease not responding to rituximab: could this indicate a splenic immune-mediated mechanism?. American Journal of Nuclear Medicine and Molecular Imaging, 2020, 10, 168-177.	1.0	0
32	The new Regulation on clinical trials in relation to radiopharmaceuticals: when and how will it be implemented?. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 2.	3.9	9
33	The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans. EJNMMI Research, 2019, 9, 45.	2.5	12
34	Immunoglobulins as Radiopharmaceutical Vectors. , 2019, , 163-179.		3
35	Perioperative PET/CT lymphoscintigraphy and fluorescent real-time imaging for sentinel lymph node mapping in early staged colon cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1495-1505.	6.4	16
36	lmmuno-PET Imaging to Assess Target Engagement: Experience from ⁸⁹ Zr-Anti-HER3 mAb (GSK2849330) in Patients with Solid Tumors. Journal of Nuclear Medicine, 2019, 60, 902-909.	5.0	50

#	Article	IF	CITATIONS
37	F8-IL10: A New Potential Antirheumatic Drug Evaluated by a PET-Guided Translational Approach. Molecular Pharmaceutics, 2019, 16, 273-281.	4.6	20
38	Fully Automated ⁸⁹ Zr Labeling and Purification of Antibodies. Journal of Nuclear Medicine, 2019, 60, 691-695.	5.0	19
39	First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in patients with advanced solid tumors using ⁸⁹ Zr-Df-CPC634 PET/CT Journal of Clinical Oncology, 2019, 37, 3093-3093.	1.6	3
40	[Zr]Zr-rituximab PET/CT activity in patients with therapy refractory interstitial pneumonitis: a feasibility study. American Journal of Nuclear Medicine and Molecular Imaging, 2019, 9, 296-308.	1.0	5
41	Noise-Induced Variability of Immuno-PET with Zirconium-89-Labeled Antibodies: an Analysis Based on Count-Reduced Clinical Images. Molecular Imaging and Biology, 2018, 20, 1025-1034.	2.6	13
42	Identification of the allosteric P2X7 receptor antagonist [11C]SMW139 as a PET tracer of microglial activation. Scientific Reports, 2018, 8, 6580.	3.3	54
43	Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies. EJNMMI Physics, 2018, 5, 26.	2.7	18
44	Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nature Communications, 2018, 9, 4664.	12.8	331
45	Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics, 2018, 8, 5400-5418.	10.0	48
46	PET Imaging of Microglial Activation—Beyond Targeting TSPO. Molecules, 2018, 23, 607.	3.8	85
47	Assessment of target-mediated uptake with immuno-PET: analysis of a phase I clinical trial with an anti-CD44 antibody. EJNMMI Research, 2018, 8, 6.	2.5	11
48	Fast and reliable generation of [¹⁸ F]triflyl fluoride, a gaseous [¹⁸ F]fluoride source. Chemical Communications, 2018, 54, 10179-10182.	4.1	23
49	High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Biomedical Optics Express, 2018, 9, 6186.	2.9	19
50	89Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding. Oncotarget, 2018, 9, 24737-24749.	1.8	24
51	Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncolmmunology, 2017, 6, e1277306.	4.6	190
52	Fluorine-18 labelled building blocks for PET tracer synthesis. Chemical Society Reviews, 2017, 46, 4709-4773.	38.1	150
53	PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer. Radiotherapy and Oncology, 2017, 122, 267-273.	0.6	48
54	Pharmacological Evaluation of Novel Bioisosteres of an Adamantanyl Benzamide P2X ₇ Receptor Antagonist. ACS Chemical Neuroscience, 2017, 8, 2374-2380.	3.5	30

#	Article	IF	CITATIONS
55	ESPMIS: Helping Young Scientists Navigate the Molecular Imaging Landscape. Molecular Imaging and Biology, 2017, 19, 325-327.	2.6	0
56	Molecular Drug Imaging: ⁸⁹ Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma. Journal of Nuclear Medicine, 2017, 58, 711-716.	5.0	69
57	Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 286-295.	6.4	111
58	Performance of 89Zr-Labeled-Rituximab-PET as an Imaging Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma. PLoS ONE, 2017, 12, e0169828.	2.5	50
59	Pharmacokinetics of cetuximab and tumor uptake of ⁸⁹ Zr-cetuximab as potential predictive biomarkers for benefit of cetuximab in patients with advanced colorectal cancer Journal of Clinical Oncology, 2017, 35, e15117-e15117.	1.6	2
60	Non invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice. PLoS ONE, 2017, 12, e0176075.	2.5	30
61	Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget, 2017, 8, 3870-3880.	1.8	48
62	Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials?. Frontiers in Pharmacology, 2016, 7, 131.	3.5	152
63	B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24Aweeks after initiation of rituximab treatment in rheumatoid arthritis patients. Arthritis Research and Therapy, 2016, 18, 266.	3.5	36
64	HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis, 2016, 251, 381-388.	0.8	51
65	Bevacizumab Targeting Diffuse Intrinsic Pontine Glioma: Results of 89Zr-Bevacizumab PET Imaging in Brain Tumor Models. Molecular Cancer Therapeutics, 2016, 15, 2166-2174.	4.1	51
66	Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 425-441.	3.8	63
67	Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Annals of Oncology, 2016, 27, 619-624.	1.2	269
68	Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1304-1314.	6.4	76
69	89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget, 2015, 6, 30384-30393.	1.8	106
70	89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied?. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2015, 59, 18-38.	0.7	38
71	Pharmacokinetics, Brain Delivery, and Efficacy in Brain Tumor-Bearing Mice of Glutathione Pegylated Liposomal Doxorubicin (2B3-101). PLoS ONE, 2014, 9, e82331.	2.5	207
72	Preclinical evaluation of ⁸⁹ Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys. MAbs, 2014, 6, 567-575.	5.2	32

#	Article	IF	CITATIONS
73	Synthesis and initial preclinical evaluation of the P2X ₇ receptor antagonist [¹¹ C]Aâ€740003 as a novel tracer of neuroinflammation. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 509-516.	1.0	70
74	A Universal Procedure for the [¹⁸ F]Trifluoromethylation of Aryl lodides and Aryl Boronic Acids with Highly Improved Specific Activity. Angewandte Chemie - International Edition, 2014, 53, 11046-11050.	13.8	84
75	Development of Novel ADCs: Conjugation of Tubulysin Analogues to Trastuzumab Monitored by Dual Radiolabeling. Cancer Research, 2014, 74, 5700-5710.	0.9	69
76	Multicenter Harmonization of ⁸⁹ Zr PET/CT Performance. Journal of Nuclear Medicine, 2014, 55, 264-267.	5.0	63
77	Pilot study of 89Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer. EJNMMI Research, 2014, 4, 35.	2.5	43
78	ImmunoPET imaging with 89Zr-cetuximab in patients with advanced colorectal cancer Journal of Clinical Oncology, 2014, 32, 11102-11102.	1.6	2
79	Imaging Histamine Receptors Using PET and SPECT. , 2014, , 331-376.		0
80	Efficient synthesis of [18F]trifluoromethane and its application in the synthesis of PET tracers. Chemical Communications, 2013, 49, 4018.	4.1	42
81	Tumour imaging by Positron Emission Tomography using fluorinase generated 5-[18F]fluoro-5-deoxyribose as a novel tracer. Nuclear Medicine and Biology, 2013, 40, 464-470.	0.6	27
82	Inert coupling of IRDye800CW and zirconium-89 to monoclonal antibodies for single- or dual-mode fluorescence and PET imaging. Nature Protocols, 2013, 8, 1010-1018.	12.0	50
83	Pilot Study on the Feasibility of PET/CT Lymphoscintigraphy with ⁸⁹ Zr-Nanocolloidal Albumin for Sentinel Node Identification in Oral Cancer Patients. Journal of Nuclear Medicine, 2013, 54, 585-589.	5.0	48
84	Phase 0 Microdosing PET Study Using the Human Mini Antibody F16SIP in Head and Neck Cancer Patients. Journal of Nuclear Medicine, 2013, 54, 397-401.	5.0	47
85	¹¹ Câ€labeled and ¹⁸ Fâ€labeled PET ligands for subtypeâ€specific imaging of histamine receptors in the brain. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 120-129.	1.0	21
86	⁸⁹ Zr-PET Radiochemistry in the Development and Application of Therapeutic Monoclonal Antibodies and Other Biologicals. Current Topics in Medicinal Chemistry, 2013, 13, 446-457.	2.1	39
87	⁹⁰ Nb – aÂpotential PET nuclide: production and labeling of monoclonal antibodies. Radiochimica Acta, 2012, 100, 857-864.	1.2	25
88	PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumor Biology, 2012, 33, 607-615.	1.8	81
89	89Zr-labeled compounds for PET imaging guided personalized therapy. Drug Discovery Today: Technologies, 2011, 8, e53-e61.	4.0	33
90	Synthesis of Phosphine and Antibody–Azide Probes for <i>in Vivo</i> Staudinger Ligation in a Pretargeted Imaging and Therapy Approach. Bioconjugate Chemistry, 2011, 22, 2072-2081.	3.6	53

#	Article	IF	CITATIONS
91	Synthesis of 3′â€Deoxyribolactones using a Hydrolysisâ€Induced Lactonization Cascade Reaction of Epoxy Cyanohydrins. European Journal of Organic Chemistry, 2008, 2008, 1336-1339.	2.4	4
92	A Multicomponent Synthesis of Triazinane Diones. Journal of Organic Chemistry, 2008, 73, 719-722.	3.2	45
93	Diastereoselective Multicomponent Synthesis of Dihydropyridones with an Isocyanide Functionality. Organic Letters, 2006, 8, 5369-5372.	4.6	48
94	Multicomponent Synthesis of Dihydropyrimidines and Thiazines. Chemistry - A European Journal, 2006, 12, 7178-7189.	3.3	68
95	A Mild Chemo-Enzymatic Oxidation–Hydrocyanation Protocol. European Journal of Organic Chemistry, 2006, 2006, 1672-1677.	2.4	35
96	Methylene-Azaphosphirane as a Reactive Intermediate. Chemistry - A European Journal, 2005, 11, 4808-4818.	3.3	13
97	A novel four-component reaction for the synthesis of functionalised dihydropyrimidinesElectronic supplementary information (ESI) available: 1H and 13C NMR data for 9 and 10. See http://www.rsc.org/suppdata/cc/b3/b308243a. Chemical Communications, 2003, , 2594.	4.1	38