
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/989744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review article "Assessment of economic flood damage". Natural Hazards and Earth System Sciences, 2010, 10, 1697-1724.	3.6	934
2	Flood risk analyses—how detailed do we need to be?. Natural Hazards, 2009, 49, 79-98.	3.4	450
3	Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 2004, 4, 295-308.	3.6	402
4	Estimation uncertainty of direct monetary flood damage to buildings. Natural Hazards and Earth System Sciences, 2004, 4, 153-163.	3.6	359
5	Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps. Natural Hazards and Earth System Sciences, 2013, 13, 1351-1373.	3.6	351
6	Flood loss reduction of private households due to building precautionary measures – lessons learned from the Elbe flood in August 2002. Natural Hazards and Earth System Sciences, 2005, 5, 117-126.	3.6	329
7	Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water Resources Research, 2005, 41, .	4.2	297
8	Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrological Sciences Journal, 2007, 52, 1016-1037.	2.6	278
9	Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Natural Hazards and Earth System Sciences, 2006, 6, 485-503.	3.6	239
10	A Probabilistic Modelling System for Assessing Flood Risks. Natural Hazards, 2006, 38, 79-100.	3.4	225
11	Is flow velocity a significant parameter in flood damage modelling?. Natural Hazards and Earth System Sciences, 2009, 9, 1679-1692.	3.6	216
12	Flood risk curves and uncertainty bounds. Natural Hazards, 2009, 51, 437-458.	3.4	194
13	Separating natural and epistemic uncertainty in flood frequency analysis. Journal of Hydrology, 2005, 309, 114-132.	5.4	184
14	Insurability and Mitigation of Flood Losses in Private Households in Germany. Risk Analysis, 2006, 26, 383-395.	2.7	176
15	Development of FLEMOcs – a new model for the estimation of flood losses in the commercial sector. Hydrological Sciences Journal, 2010, 55, 1302-1314.	2.6	158
16	Adaptation to flood risk: Results of international paired flood event studies. Earth's Future, 2017, 5, 953-965.	6.3	156
17	Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes. Natural Hazards, 2006, 38, 21-44.	3.4	155
18	Quantification of uncertainties in flood risk assessments. International Journal of River Basin Management, 2008, 6, 149-162.	2.7	143

#	Article	IF	CITATIONS
19	Recent changes in flood preparedness of private households and businesses in Germany. Regional Environmental Change, 2011, 11, 59-71.	2.9	137
20	Insights into Floodâ€Coping Appraisals of Protection Motivation Theory: Empirical Evidence from Germany and France. Risk Analysis, 2018, 38, 1239-1257.	2.7	121
21	Development and evaluation of FLEMOps – a new <i>F</i> lood <i>L</i> oss <i>E</i> stimation <i>MO</i> del for the <i>p</i> rivate <i>s</i> ector. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	121
22	Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 2016, 21, .	2.3	117
23	Adaptability and transferability of flood loss functions in residential areas. Natural Hazards and Earth System Sciences, 2013, 13, 3063-3081.	3.6	111
24	Costing natural hazards. Nature Climate Change, 2014, 4, 303-306.	18.8	110
25	The flood of June 2013 in Germany: how much do we know aboutÂitsÂimpacts?. Natural Hazards and Earth System Sciences, 2016, 16, 1519-1540.	3.6	104
26	The behavioral turn in flood risk management, its assumptions and potential implications. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1418.	6.5	102
27	Coping with floods in the city of Dresden, Germany. Natural Hazards, 2009, 51, 423-436.	3.4	101
28	Significance of "high probability/low damage" versus "low probability/high damage" flood events. Natural Hazards and Earth System Sciences, 2009, 9, 1033-1046.	3.6	99
29	Influence of flood frequency on residential building losses. Natural Hazards and Earth System Sciences, 2010, 10, 2145-2159.	3.6	98
30	Assessment of damage caused by high groundwater inundation. Water Resources Research, 2008, 44, .	4.2	97
31	Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resources Research, 2007, 43, .	4.2	81
32	After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011. Natural Hazards and Earth System Sciences, 2015, 15, 505-526.	3.6	76
33	Seasonality of floods in Germany. Hydrological Sciences Journal, 2009, 54, 62-76.	2.6	75
34	Scaling input data by GIS for hydrological modelling. Hydrological Processes, 1999, 13, 611-630.	2.6	70
35	Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany. Natural Hazards and Earth System Sciences, 2006, 6, 541-552.	3.6	69
36	Improvements on Flood Alleviation in Germany: Lessons Learned from the Elbe Flood in August 2002. Environmental Management, 2006, 38, 717-732.	2.7	69

#	Article	IF	CITATIONS
37	Influence of dike breaches on flood frequency estimation. Computers and Geosciences, 2009, 35, 907-923.	4.2	65
38	Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria). Natural Hazards, 2013, 68, 1243-1270.	3.4	63
39	Coping with Pluvial Floods by Private Households. Water (Switzerland), 2016, 8, 304.	2.7	60
40	Regionalisation of asset values for risk analyses. Natural Hazards and Earth System Sciences, 2006, 6, 167-178.	3.6	57
41	Estimating changes in flood risks and benefits of non-structural adaptation strategies - a case study from Tyrol, Austria. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 343-376.	2.1	57
42	A consistent set of trans-basin floods in Germany between 1952–2002. Hydrology and Earth System Sciences, 2010, 14, 1277-1295.	4.9	56
43	Aspects of seasonality and flood generating circulation patterns in a mountainous catchment in south-eastern Germany. Hydrology and Earth System Sciences, 2007, 11, 1455-1468.	4.9	54
44	Impact of Climate Change on the Regional Hydrology – Scenario-Based Modelling Studies in the German Rhine Catchment. Natural Hazards, 2006, 38, 45-61.	3.4	52
45	A Delphi Method Expert Survey to Derive Standards for Flood Damage Data Collection. Risk Analysis, 2010, 30, 107-124.	2.7	52
46	Promoting flood risk reduction: The role of insurance in Germany and England. Earth's Future, 2017, 5, 979-1001.	6.3	49
47	Application and validation of FLEMOcs – a flood-loss estimation model for the commercial sector. Hydrological Sciences Journal, 2010, 55, 1315-1324.	2.6	48
48	What helps people recover from floods? Insights from a survey among flood-affected residents in Germany. Regional Environmental Change, 2018, 18, 287-296.	2.9	48
49	Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany. Natural Hazards and Earth System Sciences, 2009, 9, 1247-1258.	3.6	45
50	The Role of Disaggregation of Asset Values in Flood Loss Estimation: A Comparison of Different Modeling Approaches at the Mulde River, Germany. Environmental Management, 2009, 44, 524-541.	2.7	42
51	Brief communication: Sendai framework for disaster risk reduction – success or warning sign for Paris?. Natural Hazards and Earth System Sciences, 2016, 16, 2189-2193.	3.6	42
52	Estimating flood damage to railway infrastructure – the case study of the March River flood in 2006 at the Austrian Northern Railway. Natural Hazards and Earth System Sciences, 2015, 15, 2485-2496.	3.6	41
53	Global warming to increase flood risk on European railways. Climatic Change, 2019, 155, 19-36.	3.6	41
54	Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities. Climatic Change, 2021, 167, 1.	3.6	40

#	Article	IF	CITATIONS
55	Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods. Natural Hazards and Earth System Sciences, 2017, 17, 2163-2179.	3.6	38
56	Are flood damage models converging to "reality� Lessons learnt from a blind test. Natural Hazards and Earth System Sciences, 2020, 20, 2997-3017.	3.6	38
57	Extreme Events, Critical Infrastructures, Human Vulnerability and Strategic Planning: Emerging Research Issues. Journal of Extreme Events, 2016, 03, 1650017.	1.1	35
58	Identifying Driving Factors in Floodâ€Damaging Processes Using Graphical Models. Water Resources Research, 2018, 54, 8864-8889.	4.2	35
59	Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL). Natural Hazards and Earth System Sciences, 2016, 16, 2357-2371.	3.6	35
60	Assessing the probability of largeâ€scale flood loss events: a case study for the river <scp>R</scp> hine, <scp>G</scp> ermany. Journal of Flood Risk Management, 2015, 8, 247-262.	3.3	34
61	New insights into flood warning reception and emergency response by affected parties. Natural Hazards and Earth System Sciences, 2017, 17, 2075-2092.	3.6	31
62	Using Panel Data to Understand the Dynamics of Human Behavior in Response to Flooding. Risk Analysis, 2020, 40, 2340-2359.	2.7	31
63	A comparative survey of the impacts of extreme rainfall in two international case studies. Natural Hazards and Earth System Sciences, 2017, 17, 1337-1355.	3.6	30
64	The challenges of longitudinal surveys in the flood risk domain. Journal of Risk Research, 2020, 23, 642-663.	2.6	30
65	Estimation of industrial and commercial asset values for hazard risk assessment. Natural Hazards, 2010, 52, 453-479.	3.4	28
66	Preface: Flood resilient communities – managing the consequences of flooding. Natural Hazards and Earth System Sciences, 2014, 14, 33-39.	3.6	28
67	To Act or Not To Act? Factors Influencing the General Public's Decision about Whether to Take Protective Action against Severe Weather. Weather, Climate, and Society, 2017, 9, 299-315.	1.1	28
68	The price of safety: costs for mitigating and coping with Alpine hazards. Natural Hazards and Earth System Sciences, 2013, 13, 2619-2637.	3.6	26
69	More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods. Natural Hazards and Earth System Sciences, 2022, 22, 1845-1856.	3.6	26
70	The Costing of Measures for Natural Hazard Mitigation in Europe. Natural Hazards Review, 2014, 15, .	1.5	25
71	Multiple Flood Experiences and Social Resilience: Findings from Three Surveys on Households and Companies Exposed to the 2013 Flood in Germany. Weather, Climate, and Society, 2020, 12, 63-88.	1.1	24
72	Deriving probabilistic regional envelope curves with two pooling methods. Journal of Hydrology, 2010, 380, 14-26.	5.4	23

#	Article	IF	CITATIONS
73	CEDIM Risk Explorer – a map server solution in the project "Risk Map Germany". Natural Hazards and Earth System Sciences, 2006, 6, 711-720.	3.6	20
74	Historical development and future outlook of the flood damage potential of residential areas in the Alpine Lech Valley (Austria) between 1971 and 2030. Regional Environmental Change, 2013, 13, 999-1012.	2.9	19
75	Implementation and adaptation of a macro-scale method to assess and monitor direct economic losses caused by natural hazards. International Journal of Disaster Risk Reduction, 2018, 28, 191-205.	3.9	19
76	The relevance of flood hazards and impacts in Turkey: What can be learned from different disaster loss databases?. Natural Hazards, 2018, 91, 375-408.	3.4	19
77	A Comparison of Factors Driving Flood Losses in Households Affected by Different Flood Types. Water Resources Research, 2020, 56, e2019WR025943.	4.2	19
78	Urban pluvial flood adaptation: Results of a household survey across four German municipalities. Journal of Flood Risk Management, 2022, 15, .	3.3	18
79	Risk reduction partnerships in railway transport infrastructure in an alpine environment. International Journal of Disaster Risk Reduction, 2019, 33, 385-397.	3.9	17
80	Estimating direct economic impacts of severe flood events in Turkey (2015–2020). International Journal of Disaster Risk Reduction, 2021, 58, 102222.	3.9	17
81	Are cities prepared for climate change? An analysis of adaptation readiness in 104 German cities. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	17
82	The object-specific flood damage database HOWASÂ21. Natural Hazards and Earth System Sciences, 2020, 20, 2503-2519.	3.6	16
83	Analysis of the Most Severe Flood Events in Turkey (1960–2014): Which Triggering Mechanisms and Aggravating Pathways Can be Identified?. Water (Switzerland), 2020, 12, 1562.	2.7	15
84	Local controversies of flood risk reduction measures in Germany. An explorative overview and recent insights. Journal of Flood Risk Management, 2018, 11, .	3.3	14
85	Compound inland flood events: different pathways, different impacts and different coping options. Natural Hazards and Earth System Sciences, 2022, 22, 165-185.	3.6	14
86	Frequency Analysis of Critical Meteorological Conditions in a Changing Climate—Assessing Future Implications for Railway Transportation in Austria. Climate, 2016, 4, 25.	2.8	13
87	Residential flood loss estimated from Bayesian multilevel models. Natural Hazards and Earth System Sciences, 2021, 21, 1599-1614.	3.6	11
88	Effects of intersite dependence of nested catchment structures on probabilistic regional envelope curves. Hydrology and Earth System Sciences, 2009, 13, 1699-1712.	4.9	10
89	The effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers. Science of the Total Environment, 2019, 669, 7-10.	8.0	8
90	Flash floods versus river floods – a comparison of psychological impacts and implications for precautionary behaviour. Natural Hazards and Earth System Sciences, 2020, 20, 999-1023.	3.6	7

#	Article	IF	CITATIONS
91	Quantification of Socio-Economic Flood Risks. , 2011, , 229-247.		7
92	Improving flood impact estimations. Environmental Research Letters, 2022, 17, 064007.	5.2	7
93	The reference installation approach for the estimation of industrial assets at risk. European Journal of Industrial Engineering, 2008, 2, 73.	0.8	6
94	Short contribution on adaptive behaviour of floodâ€prone companies: A pilot study of Dresden‣aubegast , Germany. Journal of Flood Risk Management, 2020, 13, e12653.	3.3	6
95	Flood precaution and coping with floods of companies in Germany. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	6
96	A quality assessment framework for natural hazard event documentation: application to trans-basin flood reports in Germany. Natural Hazards and Earth System Sciences, 2014, 14, 189-208.	3.6	6
97	Societal and economic impacts of flood hazards in Turkey – an overview. E3S Web of Conferences, 2016, 7, 05012.	0.5	5
98	Selfâ€stated recovery from flooding: Empirical results from a survey in Central Vietnam. Journal of Flood Risk Management, 2021, 14, e12680.	3.3	5
99	The presence of moral hazard regarding flood insurance and German private businesses. Natural Hazards, 2022, 112, 1295-1319.	3.4	5
100	A comparison of flood-protective decision-making between German households and businesses. Mitigation and Adaptation Strategies for Global Change, 2022, 27, .	2.1	4
101	Reply to Comment on "Significance of "high probability/low damage" versus "low probability/high damage" flood events" by C. M. Rheinberger (2009). Natural Hazards and Earth System Sciences, 2010, 10, 3-5.	3.6	3
102	Contributions of Flood Insurance to Enhance Resilience–Findings from Germany. Urban Book Series, 2018, , 129-144.	0.6	3
103	Assessment of flood loss model transferability considering changes in precaution of flood-affected residents in Germany. E3S Web of Conferences, 2016, 7, 13002.	0.5	1
104	How to deal with heat stress at an open-air event? Exploring visitors' vulnerability, risk perception, and adaptive behavior with a multi-method approach. Weather, Climate, and Society, 2021, , .	1.1	1
105	Risikokarten für Deutschland: Ergebnisse aus dem Center for Disaster Management and Risk Reduction Technology (CEDIM). Gaia, 2007, 16, 313-316.	0.7	0
106	Unsicherheiten in der HochwasserrisikoabschÄ z ung. Gaia, 2007, 16, 150-152.	0.7	0