
Farid Ya Khalili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/989728/publications.pdf Version: 2024-02-01

FADID VA KHALILI

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
3	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
4	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
5	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
6	Quantum Measurement Theory in Gravitational-Wave Detectors. Living Reviews in Relativity, 2012, 15, 5.	26.7	134
7	Observation of Generalized Optomechanical Coupling and Cooling on Cavity Resonance. Physical Review Letters, 2015, 114, 043601.	7.8	89
8	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
9	Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization. Physical Review D, 2003, 67, .	4.7	62
10	Quantum back-action in measurements of zero-point mechanical oscillations. Physical Review A, 2012, 86, .	2.5	56
11	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
12	QND measurements for future gravitational-wave detectors. General Relativity and Gravitation, 2011, 43, 671-694.	2.0	43
13	Advanced quantum techniques for future gravitational-wave detectors. Living Reviews in Relativity, 2019, 22, 1.	26.7	39
14	Anomalous dynamic backaction in interferometers. Physical Review A, 2013, 88, .	2.5	35
15	Energetic quantum limit in large-scale interferometers. AIP Conference Proceedings, 2000, , .	0.4	29
16	Universal Decoherence under Gravity: A Perspective through the Equivalence Principle. Physical Review Letters, 2016, 117, 090401.	7.8	29
17	Overcoming detection loss and noise in squeezing-based optical sensing. Npj Quantum Information, 2021, 7, .	6.7	28
18	A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes. Light: Science and Applications, 2018, 7, 11.	16.6	24

Farid Ya Khalili

#	Article	IF	CITATIONS
19	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
20	Overcoming inefficient detection in sub-shot-noise absorption measurement and imaging. Optics Express, 2019, 27, 7868.	3.4	18
21	Quantum Optomechanics. Progress in Optics, 2016, 61, 113-236.	0.6	17
22	Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity. Physical Review D, 2019, 100, .	4.7	17
23	Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input. Physical Review D, 2009, 80, .	4.7	12
24	Broadening the high sensitivity range of squeezing-assisted interferometers by means of two-channel detection. Optics Express, 2021, 29, 95.	3.4	9
25	Paired carriers as a way to reduce quantum noise of multicarrier gravitational-wave detectors. Physical Review D, 2015, 91, .	4.7	3
26	Quantum limits for stationary force sensing. Physical Review A, 2021, 103, .	2.5	3
27	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
28	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
29	Trajectories Without Quantum Uncertainties in Composite Systems with Disparate Energy Spectra. PRX Quantum 2022 3	9.2	1