
Andrew M Donson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9894737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	16.8	933
2	Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 2014, 46, 451-456.	21.4	525
3	Characterization of Distinct Immunophenotypes across Pediatric Brain Tumor Types. Journal of Immunology, 2013, 191, 4880-4888.	0.8	182
4	Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. ELife, 2017, 6, .	6.0	128
5	Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathologica, 2018, 135, 757-777.	7.7	106
6	Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathologica Communications, 2015, 3, 30.	5.2	85
7	Unique Molecular Characteristics of Radiation-Induced Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2007, 66, 740-749.	1.7	63
8	Increased Immune Gene Expression and Immune Cell Infiltration in High-Grade Astrocytoma Distinguish Long-Term from Short-Term Survivors. Journal of Immunology, 2012, 189, 1920-1927.	0.8	62
9	Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A Ependymoma. Cancer Immunology Research, 2015, 3, 1165-1174.	3.4	61
10	Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma. Journal of Neuropathology and Experimental Neurology, 2017, 76, 779-788.	1.7	57
11	Immune Gene and Cell Enrichment Is Associated with a Good Prognosis in Ependymoma. Journal of Immunology, 2009, 183, 7428-7440.	0.8	54
12	CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. , 2014, 2, 46.		52
13	Pediatric Brainstem Gangliogliomas Show <scp> <i>BRAF^{V600E} </i> </scp> Mutation in a High Percentage of Cases. Brain Pathology, 2014, 24, 173-183.	4.1	52
14	Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-Oncology, 2022, 24, 273-286.	1.2	52
15	Single-Cell RNA Sequencing of Childhood Ependymoma Reveals Neoplastic Cell Subpopulations That Impact Molecular Classification and Etiology. Cell Reports, 2020, 32, 108023.	6.4	47
16	Specific expression of PD‣1 in RELAâ€fusion supratentorial ependymoma: Implications for PD″â€ŧargeted therapy. Pediatric Blood and Cancer, 2018, 65, e26960.	1.5	44
17	Inhibition of <i>MYC</i> attenuates tumor cell selfâ€renewal and promotes senescence in SMARCB1â€deficient Group 2 atypical teratoid rhabdoid tumors to suppress tumor growth <i>in vivo</i> . International Journal of Cancer, 2019, 144, 1983-1995.	5.1	43
18	A WEE1 Inhibitor Analog of AZD1775 Maintains Synergy with Cisplatin and Demonstrates Reduced Single-Agent Cytotoxicity in Medulloblastoma Cells. ACS Chemical Biology, 2016, 11, 921-930.	3.4	42

ANDREW M DONSON

#	Article	IF	CITATIONS
19	Targeting IL-6 Is a Potential Treatment for Primary Cystic Craniopharyngioma. Frontiers in Oncology, 2019, 9, 791.	2.8	39
20	Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Reports, 2020, 33, 108286.	6.4	39
21	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
22	A retrospective analysis of recurrent pediatric ependymoma reveals extremely poor survival and ineffectiveness of current treatments across central nervous system locations and molecular subgroups. Pediatric Blood and Cancer, 2020, 67, e28426.	1.5	36
23	H3 K27M Mutation in Gangliogliomas can be Associated with Poor Prognosis. Brain Pathology, 2017, 27, 846-850.	4.1	35
24	Protein kinase C zeta isoform is critical for proliferation in human glioblastoma cell lines. Journal of Neuro-Oncology, 2000, 47, 109-115.	2.9	33
25	Targeted fusion analysis can aid in the classification and treatment of pediatric glioma, ependymoma, and glioneuronal tumors. Pediatric Blood and Cancer, 2020, 67, e28028.	1.5	33
26	NF-κB upregulation through epigenetic silencing of LDOC1 drives tumor biology and specific immunophenotype in Group A ependymoma. Neuro-Oncology, 2017, 19, 1350-1360.	1.2	32
27	Polo-like KinaseÂ1 as a potential therapeutic target in Diffuse Intrinsic Pontine Clioma. BMC Cancer, 2016, 16, 647.	2.6	31
28	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	12.4	29
29	MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncology Reports, 2016, 36, 2633-2640.	2.6	23
30	Targetable molecular alterations in congenital glioblastoma. Journal of Neuro-Oncology, 2020, 146, 247-252.	2.9	23
31	SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups. Journal of Neuropathology and Experimental Neurology, 2016, 75, 295-298.	1.7	19
32	Desmoplastic infantile astrocytoma/ganglioglioma with rare <i>BRAF</i> V600D mutation. Pediatric Blood and Cancer, 2017, 64, e26350.	1.5	19
33	Characterization of 2 Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood. Journal of Neuropathology and Experimental Neurology, 2017, 76, 595-604.	1.7	19
34	Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget, 2016, 7, 53881-53894.	1.8	17
35	Combined EphB2 receptor knockdown with radiation decreases cell viability and invasion in medulloblastoma. Cancer Cell International, 2017, 17, 41.	4.1	16
36	Targeting Polo-like kinase 1 in SMARCB1 deleted atypical teratoid rhabdoid tumor. Oncotarget, 2017, 8, 97290-97303.	1.8	15

ANDREW M DONSON

#	Article	IF	CITATIONS
37	A novel PLK1 inhibitor onvansertib effectively sensitizes MYC-driven medulloblastoma to radiotherapy. Neuro-Oncology, 2022, 24, 414-426.	1.2	15
38	Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathologica, 2021, 142, 339-360.	7.7	14
39	Cryptic developmental events determine medulloblastoma radiosensitivity and cellular heterogeneity without altering transcriptomic profile. Communications Biology, 2021, 4, 616.	4.4	13
40	Retrospective analysis of combination carboplatin and vinblastine for pediatric low-grade glioma. Journal of Neuro-Oncology, 2020, 148, 569-575.	2.9	12
41	Establishment of patient-derived orthotopic xenograft model of 1q+ posterior fossa group A ependymoma. Neuro-Oncology, 2019, 21, 1540-1551.	1.2	11
42	A Regulatory Loop of FBXW7-MYC-PLK1 Controls Tumorigenesis of MYC-Driven Medulloblastoma. Cancers, 2021, 13, 387.	3.7	11
43	<i>p16</i> Loss and E2F/cell cycle deregulation in infant posterior fossa ependymoma. Pediatric Blood and Cancer, 2017, 64, e26656.	1.5	7
44	In vitro benchmarking of NF-κB inhibitors. European Journal of Pharmacology, 2020, 873, 172981.	3.5	7
45	Myxoid glioneuronal tumor, <i>PDGFRA</i> p.K385Lâ€mutant, arising in midbrain tectum with multifocal CSF dissemination. Brain Pathology, 2022, 32, e13008.	4.1	6
46	Immunotherapeutic implications of the immunophenotype of pediatric brain tumors. Oncolmmunology, 2014, 3, e27256.	4.6	5
47	Targeting the TP53/MDM2 axis enhances radiation sensitivity in atypical teratoid rhabdoid tumors. International Journal of Oncology, 2022, 60, .	3.3	4
48	EPEN-09. RNA-SEQ ANALYSIS OF RECURRENT PAEDIATRIC EPENDYMOMAS REVEALS IMMUNOLOGICAL CHANGES SPECIFIC TO MOLECULAR SUBGROUPS. Neuro-Oncology, 2018, 20, i75-i75.	1.2	1
49	EPEN-22. SINGLE-CELL RNA SEQUENCING IDENTIFIES UPREGULATION OF IKZF1 IN PFA2 MYELOID SUBPOPULATION DRIVING AN ANTI-TUMOR PHENOTYPE. Neuro-Oncology, 2020, 22, iii312-iii312.	1.2	1
50	EP-04 * ACTIVATION OF THE IL6/STAT3 PATHWAY IN CHILDHOOD EPENDYMOMA IS ASSOCIATED WITH A PRO-INFLAMMATORY TUMOR MICROENVIRONMENT AND A POOR PROGNOSIS. Neuro-Oncology, 2015, 17, iii6-iii6.	1.2	0
51	EPEN-21. SINGLE CELL RNASEQ IDENTIFIES A PUTATIVE CANCER STEM CELL POPULATION IN POSTERIOR FOSSA EPN. Neuro-Oncology, 2018, 20, i77-i77.	1.2	0
52	CRAN-34. TRANSCRIPTOMIC AND PROTEOMIC COMPARISON OF PEDIATRIC AND ADULT ADAMANTINOMATOUS CRANIOPHARYNGIOMA. Neuro-Oncology, 2018, 20, i43-i44.	1.2	0
53	EPEN-14. SUBGROUP-SPECIFIC THERAPY OPTIONS FOR CHILDHOOD SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
54	EPEN-10. ROLE OF DNA METHYLATION ANALYSIS IN RECURRENT PAEDIATRIC EPENDYMOMA. Neuro-Oncology, 2018, 20, i75-i75.	1.2	0

#	Article	IF	CITATIONS
55	EPEN-18. TRANSCRIPTOMICS SEQUENCING REVEALS ABERRANT ALTERNATIVE SPLICING IN RECURRENT POSTERIOR FOSSA EPENDYMOMAS. Neuro-Oncology, 2018, 20, i77-i77.	1.2	0
56	EPEN-15. RETINOIDS AS POTENTIAL CHEMOTHERAPEUTIC OPTIONS FOR POSTERIOR FOSSA EPENDYMOMA OF CHILDHOOD. Neuro-Oncology, 2018, 20, i76-i76.	1.2	0
57	BIOL-03. TRANSCRIPTIONAL ANALYSIS OF ADULT AND PEDIATRIC CRANIOPHARYNGIOMA REVEALS SIMILAR EXPRESSION SIGNATURES REGARDING POTENTIAL THERAPEUTIC TARGETS. Neuro-Oncology, 2019, 21, ii66-ii66.	1.2	0
58	EPEN-10. 5-FU ENHANCES RADIATION THERAPY IN IN VITRO AND IN VIVO TREATMENT OF 1q+ PFA EPENDYMOMA. Neuro-Oncology, 2019, 21, ii79-ii79.	1.2	0
59	EMBR-27. NEOPLASTIC AND IMMUNE SINGLE CELL TRANSCRIPTOMICS DEFINE SUBGROUP-SPECIFIC INTRA-TUMORAL HETEROGENEITY OF CHILDHOOD MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i11-i12.	1.2	0
60	EPEN-11. TUMOR DIFFERENTIATION IMPACTS THE BIOLOGY OF RECURRENCE IN CHILDHOOD POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2021, 23, i15-i16.	1.2	0
61	EMBR-30. A NOVEL PLK1 INHIBITOR ONVANSERTIB EFFECTIVELY SENSITIZES GROUP 3 MEDULLOBLASTOMA TO RADIOTHERAPY. Neuro-Oncology, 2021, 23, i12-i12.	1.2	0
62	EPEN-08. THE TREM1 POSITIVE HYPOXIC MYELOID SUBPOPULATION IN POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2021, 23, i15-i15.	1.2	0
63	EPEN-07. SINGLE-CELL RNA SEQUENCING IDENTIFIES A UNIQUE MYELOID SUBPOPULATION ASSOCIATED WITH MESENCHYMAL TUMOR SUBPOPULATION IN POOR OUTCOME PEDIATRIC EPENDYMOMA. Neuro-Oncology, 2021, 23, i14-i15.	1.2	0
64	HGG-26. SINGLE-CELL RNA-SEQ OF PEDIATRIC HIGH-GRADE GLIOMAS IDENTIFIES COMMON ONCOGENIC PROCESSES AMONG DISTINCT TUMOR HISTOLOGIES. Neuro-Oncology, 2021, 23, i22-i22.	1.2	0
65	RARE-19. NETWORK AND DEEP LEARNING INFERENCE IN SINGLE CELL RNA SEQUENCING REVEAL DETAILED TRANSCRIPTIONAL SIGNATURES CONGRUENT WITH MOLECULAR UNDERSTANDING OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA. Neuro-Oncology, 2021, 23, i44-i45.	1.2	0
66	MBRS-46. CHARTING NEOPLASTIC AND IMMUNE CELL HETEROGENEITY IN HUMAN AND GEM MODELS OF MEDULLOBLASTOMA USING scRNAseq. Neuro-Oncology, 2020, 22, iii406-iii406.	1.2	0
67	RARE-08. CYST FLUID CYTOKINES MAY PROMOTE EPITHELIAL-TO-MESENCHYMAL TRANSITION IN PEDIATRIC ADAMANTINOMATOUS CRANIOPHARYNGIOMA. Neuro-Oncology, 2020, 22, iii443-iii443.	1.2	0
68	MODL-24. AN ORGANOTYPIC CHUNK CULTURE TECHNIQUE TO STUDY DISEASE MECHANISM AND DEVELOP TARGETED THERAPEUTICS FOR PEDIATRIC ADAMANTINOMATOUS CRANIOPHARYNGIOMA. Neuro-Oncology, 2020, 22, iii415-iii416.	1.2	0
69	EPEN-26. NON-CANONICAL NF-I®B SIGNALING DRIVES MESENCHYMAL EPENDYMAL CELL SUBPOPULATION IN PFA EPENDYMOMA. Neuro-Oncology, 2020, 22, iii313-iii313.	1.2	0
70	IMMU-10. TUMOR ASSOCIATED MYELOID CELLS DRIVE THE IMMUNOBIOLOGY OF HIGH RISK PEDIATRIC EPENDYMOMA. Neuro-Oncology, 2022, 24, i83-i83.	1.2	0
71	MODL-26. Development of humanized immune system, posterior fossa A ependymoma patient-derived xenograft model. Neuro-Oncology, 2022, 24, i174-i175.	1.2	0
72	EPEN-29. Spatial transcriptomic analysis of ependymoma implicates unresolved wound healing as a driver of tumor progression. Neuro-Oncology, 2022, 24, i45-i45.	1.2	0

#	Article	IF	CITATIONS
73	ATRT-10. Single-cell transcriptional profiling of ATRTs reveals heterogeneous signatures of tumor and non-malignant cell populations. Neuro-Oncology, 2022, 24, i4-i5.	1.2	0
74	MEDB-44. Transcriptomic resolution of subgroup-specific medulloblastoma architecture. Neuro-Oncology, 2022, 24, i115-i116.	1.2	0
75	HGG-17. Novel Fusion in Congenital Brainstem Diffuse High-Grade Glioma. Neuro-Oncology, 2022, 24, i64-i64.	1.2	Ο