Alessandro Lagana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9894425/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Three-Gene Signature Predicts Response to Selinexor in Multiple Myeloma. JCO Precision Oncology, 2022, , .	3.0	7
2	Continuous genomic monitoring of multiple myeloma patients to identify patients of high risk for poor prognosis Journal of Clinical Oncology, 2021, 39, e20035-e20035.	1.6	0
3	SOX11 Inhibitors Are Cytotoxic in Mantle Cell Lymphoma. Clinical Cancer Research, 2021, 27, 4652-4663.	7.0	6
4	Optimal Supportive Care With Selinexor Improves Outcomes in Patients With Relapsed/Refractory Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, e975-e984.	0.4	5
5	MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Scientific Data, 2021, 8, 199.	5.3	18
6	A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy. Cancer Discovery, 2021, 11, 599-613.	9.4	90
7	Title: Genomic and Systemic Metabolism Differences Associated with Racial Disparities in Multiple Myeloma. Blood, 2021, 138, 1601-1601.	1.4	0
8	Clinical Outcomes and Treatment Strategies for Relapsed/Refractory Myeloma Patients after Relapse on BCMA-Targeted CAR T. Blood, 2021, 138, 2704-2704.	1.4	6
9	Transcriptomic Correlates of Response to Selinexor in Multiple Myeloma Reveal a Predictive Signature. Blood, 2021, 138, 457-457.	1.4	1
10	Large-Scale Mass Cytometry Reveals Significant Activation of Innate and Adaptive Immunity in Bone Marrow Tumor Microenvironment of Iberdomide-Treated Myeloma Patients. Blood, 2021, 138, 730-730.	1.4	4
11	Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. Science Advances, 2021, 7, eabg9551.	10.3	49
12	(Distinct) origins of IgM myeloma. Blood, 2021, 138, 1914-1915.	1.4	2
13	Single-Cell Profiling Reveals Contribution of Tumor Extrinsic and Intrinsic Factors to BCMA-Targeted CAR-T Cell Efficacy in Multiple Myeloma. Blood, 2021, 138, 326-326.	1.4	5
14	Pathogenic Germline Variants in Multiple Myeloma. Blood, 2021, 138, 399-399.	1.4	2
15	Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nature Medicine, 2021, 27, 2099-2103.	30.7	92
16	Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clinical Cancer Research, 2020, 26, 450-464.	7.0	62
17	Discovery of a first-in-class EZH2 selective degrader. Nature Chemical Biology, 2020, 16, 214-222.	8.0	148
18	MicroRNA profiling of blastic plasmacytoid dendritic cell neoplasm and myeloid sarcoma. Hematological Oncology, 2020, 38, 831-833.	1.7	1

Alessandro Lagana

#	Article	IF	CITATIONS
19	A phase II study of pomalidomide, daily oral cyclophosphamide, and dexamethasone in relapsed/refractory multiple myeloma. Leukemia and Lymphoma, 2020, 61, 2208-2215.	1.3	7
20	MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1. Oncotarget, 2020, 11, 727-739.	1.8	12
21	Aberrant Cell Cycle Programming Confers Rapid Lethality in the EuSOX11+ CCND1 MCL Mouse Model. Blood, 2020, 136, 6-7.	1.4	1
22	A Network Analysis of Multiple Myeloma Related Gene Signatures. Cancers, 2019, 11, 1452.	3.7	23
23	A Machine Learning Approach Identifies a 30-Gene Model That Predicts Sensitivity to Selinexor in Multiple Myeloma. Blood, 2019, 134, 3101-3101.	1.4	2
24	KRAS induces lung tumorigenesis through microRNAs modulation. Cell Death and Disease, 2018, 9, 219.	6.3	39
25	miRandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Research, 2018, 46, D354-D359.	14.5	61
26	Precision Medicine for Relapsed Multiple Myeloma on the Basis of an Integrative Multiomics Approach. JCO Precision Oncology, 2018, 2018, 1-17.	3.0	20
27	MAGE-A3 Promotes Chemotherapy Resistance and Proliferation in Multiple Myeloma through Regulation of BIM and p21Cip1. Blood, 2018, 132, 4464-4464.	1.4	0
28	Development of a Neoantigen Prediction Tool for Patient Stratification in Immuno-Oncology Trials. Blood, 2018, 132, 2215-2215.	1.4	0
29	PDGFR-modulated miR-23b cluster and miR-125a-5p suppress lung tumorigenesis by targeting multiple components of KRAS and NF-kB pathways. Scientific Reports, 2017, 7, 15441.	3.3	49
30	A phase 2 study of panobinostat with lenalidomide and weekly dexamethasone in myeloma. Blood Advances, 2017, 1, 1575-1583.	5.2	39
31	Noncoding RNA: Current Deep Sequencing Data Analysis Approaches and Challenges. Human Mutation, 2016, 37, 1283-1298.	2.5	74
32	microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Research, 2016, 44, 6298-6308.	14.5	41
33	MAGE-a Mediate Resistance to Chemotherapy in Multiple Myeloma through Regulation of Bcl-2 Proteins. Blood, 2016, 128, 3277-3277.	1.4	3
34	Integrative Network Analysis of Newly Diagnosed Multiple Myeloma Identifies a Novel RNA-Seq Based High Riskgene Signature. Blood, 2016, 128, 3285-3285.	1.4	1
35	Aberrant a-to-I RNA Editing and Prognostic Impact of Adar in Multiple Myeloma Patients with 1q Amplification. Blood, 2016, 128, 357-357.	1.4	0
36	Mutation Burden in Multiple Myeloma Is Captured By Gene Expression Profiles. Blood, 2016, 128, 4450-4450.	1.4	0

Alessandro Lagana

#	Article	IF	CITATIONS
37	Editorial: Bioinformatics of Non-Coding RNAs with Applications to Biomedicine: Recent Advances and Open Challenges. Frontiers in Bioengineering and Biotechnology, 2015, 3, 156.	4.1	1
38	Computational Prediction of microRNA Targets. Advances in Experimental Medicine and Biology, 2015, 887, 231-252.	1.6	14
39	MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC. Proceedings of the United States of America, 2015, 112, 8650-8655.	7.1	86
40	A Phase II Study of Panobinostat with Lenalidomide and Weekly Dexamethasone in Myeloma. Blood, 2015, 126, 4226-4226.	1.4	14
41	A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget, 2015, 6, 20829-20839.	1.8	89
42	Quaking and <i>miR-155</i> interactions in inflammation and leukemogenesis. Oncotarget, 2015, 6, 24599-24610.	1.8	37
43	Towards a Network-Based Molecular Taxonomy of Newly Diagnosed Multiple Myeloma. Blood, 2015, 126. 840-840.	1.4	0