
Noel O I Cogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9893523/publications.pdf Version: 2024-02-01

Version: 20210201

NOFLO LCOCAN

#	Article	IF	CITATIONS
1	St <scp>AMPP</scp> : an R package for calculation of genetic differentiation and structure of mixedâ€ploidy level populations. Molecular Ecology Resources, 2013, 13, 946-952.	4.8	541
2	Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics, 2011, 12, 265.	2.8	180
3	Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics, 2012, 13, 104.	2.8	149
4	Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience, 2019, 8, .	6.4	132
5	Prospects for genomic selection in forage plant species. Plant Breeding, 2013, 132, 133-143.	1.9	125
6	SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativumL.). BMC Plant Biology, 2013, 13, 161.	3.6	120
7	Improving Genetic Gain with Genomic Selection in Autotetraploid Potato. Plant Genome, 2016, 9, plantgenome2016.02.0021.	2.8	115
8	EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theoretical and Applied Genetics, 2014, 127, 703-713.	3.6	91
9	SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Science, 2014, 217-218, 47-55.	3.6	86
10	Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theoretical and Applied Genetics, 2009, 120, 71-83.	3.6	85
11	Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass. Plant Genome, 2016, 9, plantgenome2015.06.0046.	2.8	83
12	Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics, 2006, 276, 101-112.	2.1	78
13	Assessment of genetic variation within a global collection of lentil (Lens culinarisMedik.) cultivars and landraces using SNP markers. BMC Genetics, 2014, 15, 150.	2.7	76
14	Improving breeding efficiency in potato using molecular and quantitative genetics. Theoretical and Applied Genetics, 2014, 127, 2279-2292.	3.6	74
15	Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evolutionary Biology, 2010, 10, 303.	3.2	70
16	Improving the analysis of low heritability complex traits for enhanced genetic gain in potato. Theoretical and Applied Genetics, 2014, 127, 809-820.	3.6	66
17	A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virology Journal, 2010, 7, 308.	3.4	63
18	SNP-Based Linkage Mapping for Validation of QTLs for Resistance to Ascochyta Blight in Lentil. Frontiers in Plant Science, 2016, 7, 1604.	3.6	62

NOEL O I COGAN

#	Article	IF	CITATIONS
19	Metagenomic arbovirus detection using MinION nanopore sequencing. Journal of Virological Methods, 2017, 249, 79-84.	2.1	60
20	Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Molecular Breeding, 2014, 33, 297-313.	2.1	58
21	SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics, 2007, 278, 585-597.	2.1	57
22	Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Molecular Biology, 2010, 72, 343-355.	3.9	52
23	Consensus Genetic Map Construction for Field Pea (Pisum sativum L.), Trait Dissection of Biotic and Abiotic Stress Tolerance and Development of a Diagnostic Marker for the er1 Powdery Mildew Resistance Gene. Plant Molecular Biology Reporter, 2015, 33, 1391-1403.	1.8	51
24	Effective mosquito and arbovirus surveillance using metabarcoding. Molecular Ecology Resources, 2018, 18, 32-40.	4.8	51
25	Evaluation and implementation of a potential diagnostic molecular marker for <i>H1</i> onferred potato cyst nematode resistance in potato (<i>Solanum tuberosum</i> L.). Plant Breeding, 2012, 131, 315-321.	1.9	50
26	Cost analysis of the application of marker-assisted selection in potato breeding. Molecular Breeding, 2013, 32, 299-310.	2.1	49
27	De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics, 2015, 16, 611.	2.8	49
28	Generation and Characterisation of a Reference Transcriptome for Lentil (Lens culinaris Medik.). International Journal of Molecular Sciences, 2016, 17, 1887.	4.1	49
29	Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. Theoretical and Applied Genetics, 2018, 131, 1891-1902.	3.6	49
30	Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome, 2006, 49, 919-930.	2.0	45
31	Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genetics, 2012, 13, 101.	2.7	45
32	Genotypingâ€byâ€sequencing through transcriptomics: implementation in a range of crop species with varying reproductive habits and ploidy levels. Plant Biotechnology Journal, 2018, 16, 877-889.	8.3	45
33	Generation of a Comprehensive Transcriptome Atlas and Transcriptome Dynamics in Medicinal Cannabis. Scientific Reports, 2019, 9, 16583.	3.3	45
34	Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in the Seed Oil. Frontiers in Plant Science, 2020, 11, 727.	3.6	45
35	Development and validation of a TaqMan® PCR assay for the Australian abalone herpes-like virus. Diseases of Aquatic Organisms, 2010, 92, 1-10.	1.0	44
36	Genomic Prediction Using Prior Quantitative Trait Loci Information Reveals a Large Reservoir of Underutilised Blackleg Resistance in Diverse Canola (<i>Brassica napus</i> L.) Lines. Plant Genome, 2018, 11, 170100.	2.8	40

#	Article	IF	CITATIONS
37	Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in <i>ITS2</i> . G3: Genes, Genomes, Genetics, 2017, 7, 19-29.	1.8	38

 $_{38}$ Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

39	Plastome Sequence Determination and Comparative Analysis for Members of the <i>Lolium</i> - <i>Festuca</i> Grass Species Complex. G3: Genes, Genomes, Genetics, 2013, 3, 607-616.	1.8	36
40	Validation of Genotyping by Sequencing Using Transcriptomics for Diversity and Application of Genomic Selection in Tetraploid Potato. Frontiers in Plant Science, 2019, 10, 670.	3.6	36
41	Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa. Molecular Genetics and Genomics, 2008, 280, 293-304.	2.1	35
42	Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis) Tj ETQq	0 0 0 s gBT /C	Dveslack
43	Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food?. Frontiers in Plant Science, 2019, 10, 1592.	3.6	35
44	Boosting Genetic Gain in Allogamous Crops via Speed Breeding and Genomic Selection. Frontiers in Plant Science, 2019, 10, 1364.	3.6	35
45	Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biology, 2009, 9, 62.	3.6	34
46	Assessment of genetic diversity in Australian canola (Brassica napus L.) cultivars using SSR markers. Crop and Pasture Science, 2009, 60, 1193.	1.5	34
47	Assessment of Genetic Diversity in Faba Bean Based on Single Nucleotide Polymorphism. Diversity, 2014, 6, 88-101.	1.7	34
48	Validation of molecular markers associated with boron tolerance, powdery mildew resistance and salinity tolerance in field peas. Frontiers in Plant Science, 2015, 6, 917.	3.6	34
49	Assignment of Individual Genotypes to Specific Forage Cultivars of Perennial Ryegrass Based on SSR Markers. Crop Science, 2009, 49, 49-58.	1.8	32
50	Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. Theoretical and Applied Genetics, 2016, 129, 991-1005.	3.6	31
51	Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing. Frontiers in Plant Science, 2018, 9, 508.	3.6	29
52	Using Sensors and Unmanned Aircraft Systems for High-Throughput Phenotyping of Biomass in Perennial Ryegrass Breeding Trials. Frontiers in Plant Science, 2019, 10, 1381.	3.6	29
53	Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics, 2011, 122, 609-622.	3.6	27
54	Optimizing Resource Allocation in a Genomic Breeding Program for Perennial Ryegrass to Balance Genetic Gain, Cost, and Inbreeding. Crop Science, 2017, 57, 243-252.	1.8	27

NOEL O I COGAN

#	Article	IF	CITATIONS
55	Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Frontiers in Genetics, 2020, 11, 546.	2.3	26
56	Biology and Genetics of Crown Rust Disease in Ryegrasses. Crop Science, 2010, 50, 1605-1624.	1.8	25
57	Horizontal transfer of a ß-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host. Scientific Reports, 2017, 7, 9024.	3.3	25
58	Evaluation and Recommendations for Routine Genotyping Using Skim Whole Genome Re-sequencing in Canola. Frontiers in Plant Science, 2018, 9, 1809.	3.6	24
59	Development and Application of Image-Based High-Throughput Phenotyping Methodology for Salt Tolerance in Lentils. Agronomy, 2020, 10, 1992.	3.0	23
60	A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI. BMC Biotechnology, 2015, 15, 25.	3.3	22
61	A multiplex PCR for rapid identification of Brassica species in the triangle of U. Plant Methods, 2017, 13, 49.	4.3	20
62	Development and implementation of a multiplexed single nucleotide polymorphism genotyping tool for differentiation of ryegrass species and cultivars. Molecular Breeding, 2014, 33, 435-451.	2.1	19
63	Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles. Frontiers in Plant Science, 2015, 6, 764.	3.6	18
64	Evidence for Heterosis in Italian Ryegrass (Lolium multiflorum Lam.) Based on Inbreeding Depression in F2 Generation Offspring from Biparental Crosses. Agronomy, 2016, 6, 49.	3.0	18
65	Comparison of genome structure between white clover and <i>Medicago truncatula</i> supports homoeologous group nomenclature based on conserved synteny. Genome, 2008, 51, 905-911.	2.0	17
66	The characterization of key physiological traits of medicinal cannabis (Cannabis sativa L.) as a tool for precision breeding. BMC Plant Biology, 2021, 21, 294.	3.6	17
67	Screening for Resistance to PVY in Australian Potato Germplasm. Genes, 2020, 11, 429.	2.4	15
68	Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 22
69	Field Spectroscopy to Determine Nutritive Value Parameters of Individual Ryegrass Plants. Agronomy, 2019, 9, 293.	3.0	13
70	Machine Learning Algorithms to Predict Forage Nutritive Value of In Situ Perennial Ryegrass Plants Using Hyperspectral Canopy Reflectance Data. Remote Sensing, 2020, 12, 928.	4.0	13
71	Genomic Prediction and Genetic Correlation of Agronomic, Blackleg Disease, and Seed Quality Traits in Canola (Brassica napus L.). Plants, 2020, 9, 719.	3.5	13
72	Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5

NOEL O I COGAN

#	Article	IF	CITATIONS
73	Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breeding, 2016, 135, 405-412.	1.9	12
74	Development and Application of Droplet Digital PCR Tools for the Detection of Transgenes in Pastures and Pasture-Based Products. Frontiers in Plant Science, 2019, 9, 1923.	3.6	12
75	Application of Genomics to Understand Salt Tolerance in Lentil. Genes, 2021, 12, 332.	2.4	12
76	Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agronomy, 2021, 11, 1937.	3.0	12
77	Gene Discovery and Molecular Marker Development, Based on High-Throughput Transcript Sequencing of Paspalum dilatatum Poir. PLoS ONE, 2014, 9, e85050.	2.5	12
78	Breeding Differently—the Digital Revolution: High-Throughput Phenotyping and Genotyping. Potato Research, 2017, 60, 337-352.	2.7	11
79	Molecular genetic marker-based analysis of species-differentiated phenotypic characters in an interspecific ryegrass mapping population. Crop and Pasture Science, 2011, 62, 892.	1.5	10
80	Comparative Genomics in Perennial Ryegrass (<i>Lolium perenne</i> L.): Identification and Characterisation of an Orthologue for the Rice Plant Architecture-Controlling Gene <i>Os</i> ABCG5. International Journal of Plant Genomics, 2011, 2011, 1-12.	2.2	9
81	Candidate gene-based association genetics analysis of herbage quality traits in perennial ryegrass (Lolium perenne L.). Crop and Pasture Science, 2013, 64, 244.	1.5	9
82	Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.). Molecular Breeding, 2015, 35, 1.	2.1	9
83	Generation and Characterisation of a Reference Transcriptome for Phalaris (Phalaris aquatica L.). Agronomy, 2017, 7, 14.	3.0	8
84	Rapid and Detailed Characterization of Transgene Insertion Sites in Genetically Modified Plants via Nanopore Sequencing. Frontiers in Plant Science, 2020, 11, 602313.	3.6	8
85	DNA Metabarcoding Enables High-Throughput Detection of Spotted Wing Drosophila (Drosophila) Tj ETQq1 1 0.	784314 rg 2.2	gBT /Overlock
86	Reference transcriptome assembly and annotation for perennial ryegrass. Genome, 2017, 60, 1086-1088.	2.0	7
87	Genome Enhanced Marker Improvement for Potato Virus Y Disease Resistance in Potato. Agronomy, 2021, 11, 832.	3.0	7
88	A new and improved genome sequence of Cannabis sativa. GigaByte, 0, 2020, 1-13.	0.0	7
89	Manipulation of Cannabinoid Biosynthesis via Transient RNAi Expression. Frontiers in Plant Science, 2021, 12, 773474.	3.6	5
90	Genetic Diversity in Australasian Populations of the Crown Rust Pathogen of Ryegrasses (Puccinia) Tj ETQq0 0 0	rgBT /Ove	rloçk 10 Tf 50

#	Article	IF	CITATIONS
91	Interpretation of SNP Haplotype Complexity in White Clover (Trifolium repens L.), an Outbreeding Allotetraploid Species. , 2009, , 211-220.		4
92	Nucleotide diversity of vernalization and floweringâ€ŧimeâ€ŧelated genes in a germplasm collection of meadow fescue (<i><scp>F</scp>estuca pratensis </i> <scp>H</scp> uds. syn. <i><scp>L</scp>olium) Tj ETQq0 (</i>	0 01.øgBT /(Dværlock 10 T
93	Evaluation of endophyte toxin production and its interaction with transgenic perennial ryegrass (Lolium perenne L.) with altered expression of fructosyltransferases. Transgenic Research, 2018, 27, 397-407.	2.4	2
94	Advances in lentil production through heterosis: Evaluating generations and breeding systems. PLoS ONE, 2022, 17, e0262857.	2.5	2
95	Utilizing Linkage Disequilibrium and Association Mapping to Implement Candidate Gene Based Markers in Perennial Ryegrass Breeding. , 2009, , 259-274.		1
96	Development of Protocols for Regeneration and Transformation of Apomitic and Sexual Forms of Dallisgrass (Paspalum dilatatum Poir.). Frontiers in Plant Science, 2021, 12, 787549.	3.6	1
97	Homology-based enzymatic DNA fragment assembly-based illumina sequencing library preparation. Biology Methods and Protocols, 2018, 3, bpy001.	2.2	0