David S Salomon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9891472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different pancreatic cancer microenvironments convert iPSCs into cancer stem cells exhibiting distinct plasticity with altered gene expression of metabolic pathways. Journal of Experimental and Clinical Cancer Research, 2022, 41, 29.	8.6	11
2	Optimization of production and characterization of a recombinant soluble human Criptoâ€1 protein inhibiting selfâ€renewal of cancer stem cells. Journal of Cellular Biochemistry, 2022, , .	2.6	2
3	Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers, 2021, 13, 2491.	3.7	9
4	Whence CRIPTO: The Reemergence of an Oncofetal Factor in â€~Wounds' That Fail to Heal. International Journal of Molecular Sciences, 2021, 22, 10164.	4.1	4
5	TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis, 2020, 41, 313-325.	2.8	32
6	Tumor-associated macrophages derived from cancer stem cells. Acta Histochemica, 2020, 122, 151628.	1.8	18
7	Sulforaphane Suppresses the Growth of Triple-negative Breast Cancer Stem-like Cells <i>In vitro</i> and <i>In vivo</i> . Cancer Prevention Research, 2019, 12, 147-158.	1.5	58
8	Exogenous Cripto-1 Suppresses Self-Renewal of Cancer Stem Cell Model. International Journal of Molecular Sciences, 2018, 19, 3345.	4.1	10
9	TIMPâ€⊋ Inhibits Triple Negative Breast Cancer Growth and Metastasis through EMT Suppression and Promotion of Vascular Normalization. FASEB Journal, 2018, 32, 678.2.	0.5	1
10	Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies. PLoS ONE, 2016, 11, e0153270.	2.5	7
11	Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals. Biochemical Journal, 2016, 473, 2141-2154.	3.7	37
12	Evaluation of glycosylated docetaxel-encapsulated liposomes prepared by remote loading under solubility gradient. Journal of Microencapsulation, 2016, 33, 172-182.	2.8	6
13	Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Research and Treatment, 2016, 156, 211-226.	2.5	80
14	Cripto-1: an extracellular protein – connecting the sequestered biological dots. Connective Tissue Research, 2015, 56, 364-380.	2.3	12
15	Cripto-1 Ablation Disrupts Alveolar Development in the Mouse Mammary Gland through a Progesterone Receptor–Mediated Pathway. American Journal of Pathology, 2015, 185, 2907-2922.	3.8	8
16	Cripto-1 in TNBC. Aging, 2015, 7, 515-516.	3.1	2
17	CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities. Oncotarget, 2015, 6, 11994-12008.	1.8	20
18	<i>Cripto-1</i> as a novel therapeutic target for triple negative breast cancer. Oncotarget, 2015, 6, 11910-11929.	1.8	57

#	Article	IF	CITATIONS
19	Characterization of Cancer Stem-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Transformed by Tumor-Derived Extracellular Vesicles. Journal of Cancer, 2014, 5, 572-584.	2.5	51
20	Transforming Growth Factor in Cancer: Janus, the Two-Faced God. Journal of the National Cancer Institute, 2014, 106, djt441-djt441.	6.3	5
21	Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation. PLoS ONE, 2014, 9, e107976.	2.5	32
22	The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Seminars in Cancer Biology, 2014, 29, 51-58.	9.6	86
23	CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. Journal of Clinical Investigation, 2014, 124, 3003-3015.	8.2	84
24	Mouse induced pluripotent stem cell microenvironment generates epithelial-mesenchymal transition in mouse Lewis lung cancer cells. American Journal of Cancer Research, 2014, 4, 80-8.	1.4	8
25	Regulation of human Criptoâ€1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. Journal of Cellular Physiology, 2013, 228, 1174-1188.	4.1	30
26	Cripto-1 enhances the canonical Wnt/ \hat{l}^2 -catenin signaling pathway by binding to LRP5 and LRP6 co-receptors. Cellular Signalling, 2013, 25, 178-189.	3.6	45
27	An evolving web of signaling networks regulated by Cripto-1. Growth Factors, 2012, 30, 13-21.	1.7	49
28	Cripto-1 Is a Cell Surface Marker for a Tumorigenic, Undifferentiated Subpopulation in Human Embryonal Carcinoma Cells Â. Stem Cells, 2010, 28, 1303-1314.	3.2	57
29	Intercellular transfer regulation of the paracrine activity of GPI-anchored Cripto-1 as a Nodal co-receptor. Biochemical and Biophysical Research Communications, 2010, 403, 108-113.	2.1	12
30	Role of Cripto-1 in Stem Cell Maintenance and Malignant Progression. American Journal of Pathology, 2010, 177, 532-540.	3.8	110
31	Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. Journal of Cell Biology, 2009, 187, 343-353.	5.2	52
32	Cripto-1 Is Required for Hypoxia to Induce Cardiac Differentiation of Mouse Embryonic Stem Cells. American Journal of Pathology, 2009, 175, 2146-2158.	3.8	54
33	Regulation of human criptoâ€l gene expression by TGFâ€Î²1 and BMPâ€4 in embryonal and colon cancer cells. Journal of Cellular Physiology, 2008, 215, 192-203.	4.1	42
34	Netrinâ€1 can affect morphogenesis and differentiation of the mouse mammary gland. Journal of Cellular Physiology, 2008, 216, 824-834.	4.1	24
35	Characterization of the glycosylphosphatidylinositol-anchor signal sequence of human Cryptic with a hydrophilic extension. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2671-2681.	2.6	8
36	Growth Factor Induction of Cripto-1 Shedding by Glycosylphosphatidylinositol-Phospholipase D and Enhancement of Endothelial Cell Migration. Journal of Biological Chemistry, 2007, 282, 31643-31655.	3.4	60

#	Article	IF	CITATIONS
37	Requirement of Glycosylphosphatidylinositol Anchor of Cripto-1 for trans Activity as a Nodal Co-receptor. Journal of Biological Chemistry, 2007, 282, 35772-35786.	3.4	51
38	β-Catenin/TCF/LEF regulate expression of the short form human Cripto-1. Biochemical and Biophysical Research Communications, 2007, 355, 240-244.	2.1	36
39	Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuroAIDS. Neuroscience Letters, 2006, 410, 94-99.	2.1	10
40	Identification of Cripto-1 as a Novel Serologic Marker for Breast and Colon Cancer. Clinical Cancer Research, 2006, 12, 5158-5164.	7.0	79
41	Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene, 2005, 24, 4094-4105.	5.9	70
42	Role of Human Cripto-1 in Tumor Angiogenesis. Journal of the National Cancer Institute, 2005, 97, 132-141.	6.3	76
43	Cripto-1: An Oncofetal Gene with Many Faces. Current Topics in Developmental Biology, 2005, 67, 85-133.	2.2	70
44	Overexpression of Human Cripto-1 in Transgenic Mice Delays Mammary Gland Development and Differentiation and Induces Mammary Tumorigenesis. American Journal of Pathology, 2005, 167, 585-597.	3.8	54
45	Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV riptoâ€1 transgenic mice. Journal of Cellular Physiology, 2004, 201, 266-276.	4.1	126
46	Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. Journal of Clinical Investigation, 2003, 112, 575-587.	8.2	136
47	A Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Research, 2003, 63, 1192-7.	0.9	91
48	Cripto-1 Enhances Migration and Branching Morphogenesis of Mouse Mammary Epithelial Cells. Experimental Cell Research, 2001, 266, 95-105.	2.6	87
49	Regulation of heparin-binding EGF-like growth factor expression in Ha-ras transformed human Mammary epithelial cells. Journal of Cellular Physiology, 2001, 186, 233-242.	4.1	9
50	Identification of Cripto-1 in human milk. Breast Cancer Research and Treatment, 2001, 66, 1-7.	2.5	32
51	RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen-activated protein kinase in human mammary epithelial cells. International Journal of Cancer, 2000, 88, 44-52.	5.1	26
52	Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells. International Journal of Cancer, 2000, 88, 566-574.	5.1	53
53	Expression and Function of Egf-Related Peptides and Their Receptors in Gynecological Cancer - From Basic Science to Therapy?. Journal of Receptor and Signal Transduction Research, 2000, 20, 1-46.	2.5	17
54	Anti–sense suppression of epidermal growth factor receptor expression alters cellular proliferation,		1

cell–adhesion and tumorigenicity in ovarian cancer cells.', 2000, 88, 566.

#	Article	IF	CITATIONS
55	Localization of estrone sulfatase in human breast carcinomas. Breast Cancer, 1999, 6, 331-337.	2.9	27
56	Processing and juxtacrine activity of membrane-anchored betacellulin. Journal of Cellular Biochemistry, 1999, 72, 423-434.	2.6	49
57	Heregulin-dependent autocrine loop regulates growth of K-ras but not erbB-2 transformed rat thyroid epithelial cells. , 1998, 176, 383-391.		15
58	Purification and Characterization of a Recombinant Human Cripto-1 Protein. Growth Factors, 1998, 15, 215-229.	1.7	36
59	Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. , 1997, 170, 47-56.		28
60	Differential immunohistochemical detection of transforming growth factor α, amphiregulin and CRIPTO in human normal and malignant breast tissues. , 1996, 65, 51-56.		95
61	Characterization of a novel amphiregulin-related molecule in 12-O-tetradecanoylphorbol-13-acetate-treated breast cancer cells. , 1996, 169, 497-508.		18
62	Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. , 1996, 15, 44-56.		48
63	Differential immunohistochemical detection of transforming growth factor α, amphiregulin and CRIPTO in human normal and malignant breast tissues. International Journal of Cancer, 1996, 65, 51-56.	5.1	1
64	Amphiregulin anti-sense oligodeoxynucleotides inhibit growth and transformation of a human colon carcinoma cell line. International Journal of Cancer, 1995, 62, 762-766.	5.1	31
65	Infection with a transforming growth factor α anti-sense retroviral expression vector reduces thein vitro growth and transformation of a human colon cancer cell line. International Journal of Cancer, 1993, 54, 952-958.	5.1	31
66	Additive effects of c-erbB-2, c-Ha-ras, and transforming growth factor-α genes on in vitro transformation of human mammary epithelial cells. Molecular Carcinogenesis, 1992, 6, 43-52.	2.7	65
67	Expression of cripto, a Novel Gene of the Epidermal Growth Factor Family, in Human Gastrointestinal Carcinomas. Japanese Journal of Cancer Research, 1991, 82, 969-973.	1.7	64
68	Over-expression of the epidermal growth factor receptor in human breast cancer cells fails to induce an Estrogen-independent phenotype. International Journal of Cancer, 1990, 46, 712-718.	5.1	33
69	Stromal influences on transformation of human mammary epithelial cells overexpressingc-myc and SV40T. Journal of Cellular Physiology, 1990, 145, 207-216.	4.1	53
70	mRNA Expression of Transforming Growth Factor Alpha in Human Breast Carcinomas and Its Activity in Effusions of Breast Cancer Patients. Journal of the National Cancer Institute, 1989, 81, 1165-1171.	6.3	42
71	Transformation of an established mouse mammary epithelial cell line following transfection with a human transforming growth factor alpha cDNA. Molecular Carcinogenesis, 1989, 2, 1-11.	2.7	135
72	Site-selective 8-chloroadenosine 3′,5′-cyclic monophosphate inhibits transformation and transforming growth factor α production in Ki-ras-transformed rat fibroblasts. FEBS Letters, 1989, 242, 363-367.	2.8	45

#	Article	IF	CITATIONS
73	Transformation of mouse mammary epithelial cells with the Ha-rasbut not with theneuoncogene results in a gene dosage-dependent increase in transforming growth factor-α production. FEBS Letters, 1989, 250, 474-478.	2.8	18
74	Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors inras-transformed mouse mammary epithelial cells. Journal of Cellular Physiology, 1987, 130, 397-409.	4.1	101
75	Basic Science Review: Growth Factors in Cancer and Their Relationship to Oncogenes. Cancer Investigation, 1986, 4, 43-60.	1.3	50
76	Flat revertants derived from kirsten murine sarcoma virus-transformed cells produce transforming growth factors. Journal of Cellular Physiology, 1984, 121, 22-30.	4.1	16
77	Effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the growth inhibitory and increased phosphatidylinositol (PI) responses induced by epidermal growth factor (EGF) in A431 cells. Journal of Cellular Physiology, 1983, 117, 91-100.	4.1	72