Bramhadev Pattnaik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9890463/publications.pdf

Version: 2024-02-01

279798 345221 1,949 131 23 36 citations g-index h-index papers 133 133 133 1543 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Impact of mass vaccination on the spatiotemporal dynamics of FMD outbreaks in India, 2008–2016. Transboundary and Emerging Diseases, 2022, , .	3.0	6
2	Identification of novel interactions between host and non-structural protein 2C of foot-and-mouth disease virus. Journal of General Virology, 2021, 102, .	2.9	1
3	Foot and Mouth Disease (FMD) incidence in cattle and buffaloes and its associated farm-level economic costs in endemic India. Preventive Veterinary Medicine, 2021, 190, 105318.	1.9	15
4	Assessment of fitness of footâ€andâ€mouth disease virus A IND 27/2011 as candidate vaccine strain. Transboundary and Emerging Diseases, 2021, , .	3.0	1
5	Selective isolation of foot-and-mouth disease virus from coinfected samples containing more than one serotype. Brazilian Journal of Microbiology, 2021, 52, 2447-2454.	2.0	4
6	Differential antibody responses to the major antigenic sites of FMD virus serotype O after primo-vaccination, multiply-vaccination and after natural exposure. Infection, Genetics and Evolution, 2020, 78, 104105.	2.3	1
7	African swine fever: A permanent threat to Indian pigs. Veterinary World, 2020, 13, 2275-2285.	1.7	18
8	Genome Sequences of Seven Foot-and-Mouth Disease Virus Isolates Reveal Diversity in the O/ME-SA/Ind2001 Lineage in India between 1997 and 2009. Microbiology Resource Announcements, 2020, 9, .	0.6	1
9	Immunopathology of COVID-19 caused by SARS-CoV-2: A brief review. Acta Scientific Microbiology, 2020, 3, 79-88.	0.1	O
10	Influenza A Virus: Cause of Multispecies Disease and Zoonoses. Acta Scientific Microbiology, 2020, 3, 37-46.	0.1	0
11	Serology: A Precise Tool in Diagnosis and Epidemiology of COVID-19. Acta Scientific Microbiology, 2020, 3, 83-91.	0.1	O
12	Rabbit Haemorrhagic Disease: Biological Pest Control Method to Evolve as a Transboundary Disease. International Journal of Livestock Research, 2020, , 1.	0.1	0
13	Covid-19 pandemic: History, aetiology, epidemiology, vaccinology and societal impact. Indian Journal of Comparative Microbiology Immunology and Infectious Diseases, 2020, 41, 1.	0.0	1
14	Crimean–Congo Haemorrhagic Fever (CCHF): A Zoonoses. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3201-3210.	0.1	1
15	Genome Sequences of 18 Foot-and-Mouth Disease Virus Outbreak Strains of Serotype O Sublineage Ind2001d from India, 2013 to 2014. Microbiology Resource Announcements, 2019, 8, .	0.6	7
16	Genetic and antigenic variation of foot-and-mouth disease virus during persistent infection in naturally infected cattle and Asian buffalo in India. PLoS ONE, 2019, 14, e0214832.	2.5	20
17	Development and Utilization of VHH Antibodies Derived from Camelus Dromedarius Against Foot-and-Mouth Disease Virus. Animal Biotechnology, 2019, 30, 57-62.	1.5	5
18	Substitutions accrued on Foot-and-mouth disease virus capsid during propagation in cell culture. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 747-753.	1.0	0

#	Article	IF	Citations
19	Evidence of subclinical foot-and-mouth disease virus infection in young calves born from clinically recovered cow under natural condition. Tropical Animal Health and Production, 2018, 50, 1167-1170.	1.4	2
20	Dynamics of widespread footâ€andâ€mouth disease virus serotypes A, O and Asiaâ€1 in southern Asia: A Bayesian phylogenetic perspective. Transboundary and Emerging Diseases, 2018, 65, 696-710.	3.0	16
21	Alternate vaccine strain selection in the wake of emerging foot-and-mouth disease virus serotype A antigenic variants in India. Vaccine, 2018, 36, 3191-3194.	3.8	8
22	Quantitative characteristics of the footâ€andâ€mouth disease carrier state under natural conditions in India. Transboundary and Emerging Diseases, 2018, 65, 253-260.	3.0	23
23	Porcine sapelovirus among diarrhoeic piglets in India. Transboundary and Emerging Diseases, 2018, 65, 261-263.	3.0	22
24	Mutational analysis of foot and mouth disease virus nonstructural polyprotein 3AB-coding region to design a negative marker virus. Virus Research, 2018, 243, 36-43.	2.2	12
25	Footâ€andâ€mouth disease virus transmission dynamics and persistence in a herd of vaccinated dairy cattle in India. Transboundary and Emerging Diseases, 2018, 65, e404-e415.	3.0	24
26	Kinetics of Interferon gamma and Interleukin-21 response following foot and mouth disease virus infection. Microbial Pathogenesis, 2018, 125, 20-25.	2.9	3
27	Herd Immunity Against Foot-and-Mouth Disease Under Different Vaccination Practices in India. Transboundary and Emerging Diseases, 2017, 64, 1133-1147.	3.0	8
28	Farm Community Impacts of Foot-and-Mouth Disease Outbreaks in Cattle and Buffaloes in Karnataka State, India. Transboundary and Emerging Diseases, 2017, 64, 849-860.	3.0	9
29	Antigenic variability of foot-and-mouth disease virus serotype O during serial cytolytic passage. Virus Genes, 2017, 53, 931-934.	1.6	2
30	Uncleaved 2A-peptide of foot-and-mouth disease virus can display foreign epitope-tag at the virion surface. Infection, Genetics and Evolution, 2017, 54, 324-329.	2.3	1
31	Anti-proliferative role of recombinant lethal toxin of <i>Bacillus anthracis</i> on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget, 2017, 8, 35835-35847.	1.8	7
32	The direct boil RT-mPCR: A simple and rapid method for detection of foot-and-mouth disease virus genome in clinical samples without nucleic acid extraction. Indian Journal of Veterinary Pathology, 2017, 41, 12.	0.0	2
33	Molecular epidemiologic investigation of foot-and-mouth disease in pig population of India. Indian Journal of Animal Research, 2017, , .	0.1	0
34	Investigation of foot-and mouth disease outbreak in a pig farm at Kollam district of Kerala, India. Indian Journal of Animal Research, 2017, , .	0.1	1
35	Clinico-molecular diagnosis and phylogenetic investigation of foot-and-mouth disease in small ruminant population of India. Small Ruminant Research, 2016, 144, 1-5.	1.2	3
36	Evaluation of FTA \hat{A}^{\otimes} card for the rescue of infectious foot-and-mouth disease virus by chemical transfection of extracted RNA in cultured cells. Molecular and Cellular Probes, 2016, 30, 225-230.	2.1	12

#	Article	IF	CITATIONS
37	Partial deletion of stem-loop 2 in the $3\hat{a}\in^2$ untranslated region of foot-and-mouth disease virus identifies a region that is dispensable for virus replication. Archives of Virology, 2016, 161, 2285-2290.	2.1	1
38	Chimeric foot-and-mouth disease virus serotype O displaying a serotype Asia1 antigenic epitope at the surface. Biotechnology Letters, 2016, 38, 1509-1517.	2.2	2
39	Outbreaks of Footâ€andâ€Mouth Disease in Libya and Saudi Arabia During 2013 Due to an Exotic O/ <scp>ME</scp> ― <scp>SA</scp> /Indâ€2001 Lineage Virus. Transboundary and Emerging Diseases, 2016, 63, e431-5.	3.0	53
40	Diagnostic application of recombinant non-structural protein 3A to detect antibodies induced by foot-and-mouth disease virus infection. Biologicals, 2016, 44, 157-162.	1.4	11
41	Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A. Virus Genes, 2016, 52, 235-243.	1.6	14
42	The carboxy-terminal half of nonstructural protein 3A is not essential for foot-and-mouth disease virus replication in cultured cell lines. Archives of Virology, 2016, 161, 1295-1305.	2.1	10
43	Foot-and-Mouth Disease Virus-Associated Abortion and Vertical Transmission following Acute Infection in Cattle under Natural Conditions. PLoS ONE, 2016, 11, e0167163.	2.5	20
44	Detection of foot-and-mouth disease virus infection in cattle and pigs at Mannuthy, Kerala. Indian Journal of Veterinary Pathology, 2016, 40, 55.	0.0	1
45	Polymerase chain reaction for amplification of MCP-1 gene from peripheral blood mononuclear cells of cattle. Indian Journal of Comparative Microbiology Immunology and Infectious Diseases, 2016, 37, 24.	0.0	O
46	A Review on Foot-and-mouth disease: pathology, diagnosis and its management. Indian Journal of Veterinary Pathology, 2016, 40, 105.	0.0	4
47	Optimization of fluorescent antibody techniques for demonstration of foot-and-mouth disease virus in bovine tongue epithelium and dorsal soft palate. Indian Journal of Veterinary Pathology, 2016, 40, 297.	0.0	0
48	Foot-and-mouth disease in wildlife population of India. Indian Journal of Animal Research, 2016, , .	0.1	3
49	Cross-sectional Serosurvey of Crimean-Congo Hemorrhagic Fever Virus IgG in Livestock, India, 2013–2014. Emerging Infectious Diseases, 2015, 21, 1837-1839.	4.3	37
50	Spectrum of VP1 region genetic variants in the foot-and-mouth disease virus serotype OÂpopulations derived from infected cattle tongue epithelium. Acta Virologica, 2015, 59, 305-310.	0.8	1
51	Diagnostic Potential of Recombinant scFv Antibodies Generated Against Hemagglutinin Protein of Influenza A Virus. Frontiers in Immunology, 2015, 6, 440.	4.8	11
52	Diagnostic assays developed for the control of foot-and-mouth disease in India. World Journal of Virology, 2015, 4, 295.	2.9	17
53	Evolutionary dynamics of foot-and-mouth disease virus O/ME-SA/Ind2001 lineage. Veterinary Microbiology, 2015, 178, 181-189.	1.9	39
54	Capsid coding region diversity of re-emerging lineage C foot-and-mouth disease virus serotype Asia1 from India. Archives of Virology, 2015, 160, 1751-1759.	2.1	13

#	Article	IF	CITATIONS
55	Quantitative single dilution liquid phase blocking ELISA for sero-monitoring of foot-and-mouth disease in India. Biologicals, 2015, 43, 158-164.	1.4	7
56	Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions. Journal of General Virology, 2015, 96, 553-564.	2.9	20
57	A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of foot-and-mouth disease virus serotype A in BHK-21 cells. Biologicals, 2015, 43, 71-78.	1.4	10
58	Antigenic and genetic comparison of foot-and-mouth disease virus serotype O Indian vaccine strain, O/IND/R2/75 against currently circulating viruses. Vaccine, 2015, 33, 693-700.	3.8	40
59	Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography. Biologicals, 2015, 43, 390-398.	1.4	20
60	Construction and characterization of yeast two-hybrid cDNA library derived from LFBK cell line. Biologicals, 2015, 43, 202-208.	1.4	4
61	Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to detect antibodies against foot-and-mouth disease virus serotype O. Journal of Virological Methods, 2015, 215-216, 45-51.	2.1	23
62	Marker vaccine potential of foot-and-mouth disease virus with large deletion in the non-structural proteins 3A and 3B. Biologicals, 2015, 43, 504-511.	1.4	10
63	Megaprimer-mediated capsid swapping for the construction of custom-engineered chimeric foot-and-mouth disease virus. Virus Genes, 2015, 51, 225-233.	1.6	3
64	Indirect ELISA using recombinant nonstructural protein 3D to detect foot and mouth disease virus infection associated antibodies. Biologicals, 2015, 43, 47-54.	1.4	9
65	Genetic and antigenic analysis of foot-and-mouth disease virus serotype O responsible for outbreaks in India during 2013. Infection, Genetics and Evolution, 2015, 30, 59-64.	2.3	25
66	Isolation and characterisation of foot-and-mouth disease virus from a captive Indian elephant (Elephas maximus). Indian Journal of Veterinary Pathology, 2015, 39, 376.	0.0	3
67	A new lineage of foot-and-mouth disease virus serotype O in India. Veterinaria Italiana, 2015, 51, 145-9.	0.5	4
68	The Expression of IL6 and 21 in Crossbred Calves Upregulated by Inactivated Trivalent FMD Vaccine. Animal Biotechnology, 2014, 25, 108-118.	1.5	3
69	RNA structure disrupting G320-T transversion within the short fragment of the 5′ untranslated region prevents rescue of infectious foot-and-mouth disease virus. Journal of Virological Methods, 2014, 196, 100-103.	2.1	4
70	Detection of antibodies specific for foot-and-mouth disease virus infection using indirect ELISA based on recombinant nonstructural protein 2B. Archives of Virology, 2014, 159, 1641-1650.	2.1	17
71	Evolution of serotype A foot-and-mouth disease virus capsid under neutralizing antibody pressure in vitro. Virus Research, 2014, 181, 72-76.	2.2	10
72	Production and characterization of single-chain antibody (scFv) against 3ABC non-structural protein in Escherichia coli for sero-diagnosis of Foot and Mouth Disease virus. Biologicals, 2014, 42, 339-345.	1.4	7

#	Article	IF	Citations
73	Development of single-chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA. Journal of Virological Methods, 2014, 208, 129-137.	2.1	10
74	Comparative evaluation of non-structural protein-antibody detecting ELISAs for foot-and-mouth disease sero-surveillance under intensive vaccination. Journal of Virological Methods, 2014, 207, 22-28.	2.1	23
75	Diagnostic potential of recombinant nonstructural protein 3B to detect antibodies induced by foot-and-mouth disease virus infection in bovines. Archives of Virology, 2014, 159, 2359-2369.	2.1	18
76	Development and evaluation of a one step reverse transcription-loop mediated isothermal amplification assay (RT-LAMP) for rapid detection of foot and mouth disease virus in India. VirusDisease, 2014, 25, 358-364.	2.0	15
77	Serosurveillance of foot-and-mouth disease in sheep and goat population of India. Preventive Veterinary Medicine, 2014, 113, 273-277.	1.9	20
78	Efficient rescue of foot-and-mouth disease virus in cultured cells transfected with RNA extracted from clinical samples. Journal of Virological Methods, 2014, 196, 65-70.	2.1	14
79	Comparison of stabilisers for development of a lyophilised multiplex reverse-transcription PCR mixture for rapid detection of foot and mouth disease virus serotypes. OIE Revue Scientifique Et Technique, 2014, 33, 859-867.	1.2	4
80	Status of Foot-and-mouth Disease in India. Transboundary and Emerging Diseases, 2013, 60, 197-203.	3.0	63
81	Association of BoLA DRB3 alleles with variability in immune response among the crossbred cattle vaccinated for foot-and-mouth disease (FMD). Research in Veterinary Science, 2013, 95, 156-163.	1.9	30
82	Evaluation of Genetic and Environmental Parameters Determining Antibody Response Induced by Vaccination Against Foot and Mouth Disease. Agricultural Research, 2013, 2, 140-147.	1.7	10
83	Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis. Research in Veterinary Science, 2013, 94, 336-340.	1.9	33
84	Phylogeny and genetic diversity of foot and mouth disease virus serotype Asia1 in India during 1964–2012. Veterinary Microbiology, 2013, 167, 280-288.	1.9	14
85	Genetic and antigenic characterization of Indian foot-and-mouth disease virus serotype O isolates collected during the period 2001 to 2012. Infection, Genetics and Evolution, 2013, 13, 109-115.	2.3	9
86	Truncated recombinant non-structural protein 2C-based indirect ELISA for FMD sero-surveillance. Journal of Virological Methods, 2013, 193, 405-414.	2.1	18
87	Antigenic site variation in foot-and-mouth disease virus serotype O grown under vaccinal serum antibodies in vitro. Virus Research, 2013, 176, 273-279.	2.2	13
88	Emergence of a novel lineage genetically divergent from the predominant Ind2001 lineage of serotype O foot-and-mouth disease virus in India. Infection, Genetics and Evolution, 2013, 18, 1-7.	2.3	24
89	Experimental evidence for competitive growth advantage of genotype VII over VI: Implications for foot-and-mouth disease virus serotype A genotype turnover in nature. Research in Veterinary Science, 2012, 92, 317-319.	1.9	5
90	Field outbreak strains of serotype O foot-and-mouth disease virus from India with a deletion in the immunodominant \hat{l}^2G - \hat{l}^2H loop of the VP1 protein. Archives of Virology, 2012, 157, 1967-1970.	2.1	11

#	Article	IF	CITATIONS
91	Immunodiagnosis of foot-and-mouth disease using mutated recombinant 3ABC polyprotein in a competitive ELISA. Journal of Virological Methods, 2012, 185, 52-60.	2.1	23
92	Foot-and-mouth Disease: Global Status and Future Road Map for Control and Prevention in India. Agricultural Research, 2012, 1, 132-147.	1.7	63
93	Emergence of antigenic variants with in serotype A foot and mouth disease virus in India and evaluation of a new vaccine candidate panel. Veterinary Microbiology, 2012, 158, 405-409.	1.9	16
94	Genetic characterization of vaccine and field strains of serotype AÂfoot-and-mouth disease virus from India. Acta Virologica, 2012, 55, 349-352.	0.8	10
95	Phylogenetic structure of serotype A foot-and-mouth disease virus: global diversity and the Indian perspective. Journal of General Virology, 2011, 92, 873-879.	2.9	41
96	Multiplex PCR for rapid detection of serotype A foot-and-mouth disease virus variants with amino acid deletion at position 59 of the capsid protein VP3. Journal of Virological Methods, 2011, 171, 287-291.	2.1	6
97	Recombinant non-structural polyprotein 3AB-based serodiagnostic strategy for FMD surveillance in bovines irrespective of vaccination. Journal of Virological Methods, 2011, 177, 184-192.	2.1	55
98	Comparative complete genome analysis of Indian type A foot-and-mouth disease virus field isolates. Virus Genes, 2011, 43, 224-233.	1.6	10
99	Phylogenetic analysis of Indian serotype Asia1 foot-and-mouth-disease virus isolates revealed emergence and reemergence of different genetic lineages. Veterinary Microbiology, 2010, 144, 198-202.	1.9	14
100	Serological Evidence of Foot-and-Mouth Disease Virus Infection in Randomly Surveyed Goat Population of Orissa, India. Transboundary and Emerging Diseases, 2010, 57, 448-454.	3.0	24
101	Multiple Origins of Foot-and-Mouth Disease Virus Serotype Asia 1 Outbreaks, 2003–2007. Emerging Infectious Diseases, 2009, 15, 1046-1051.	4.3	104
102	Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry. Veterinary Microbiology, 2009, 133, 154-163.	1.9	74
103	Comparative analysis of the large fragment of the 5′ untranslated region (LF-5′ UTR) of serotype A foot-and-mouth disease virus field isolates from India. Virus Genes, 2009, 39, 81-89.	1.6	5
104	Genetic characterization of type A foot-and-mouth disease virus 3A region in context of the reemergence of VP359-deletion lineage in India. Infection, Genetics and Evolution, 2009, 9, 483-492.	2.3	7
105	Analysis of the leader proteinase (Lpro) region of type A foot-and-mouth disease virus with due emphasis on phylogeny and evolution of the emerging VP359-deletion lineage from India. Virus Research, 2009, 141, 34-46.	2.2	8
106	Rapid Detection of Highly Pathogenic Avian Influenza H5N1 Virus by TaqMan Reverse Transcriptase-Polymerase Chain Reaction. International Journal of Poultry Science, 2009, 8, 260-263.	0.1	2
107	Assessment of Pathogenic Potential of Two Indian H5N1 Highly Pathogenic Avian Influenza Virus Isolates by Intravenous Pathogenicity Index Test. International Journal of Poultry Science, 2009, 8, 283-290.	0.1	2
108	Identification and Subtyping of Avian Influenza Viruses by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Agarose Gel Electrophoresis. International Journal of Poultry Science, 2009, 8, 465-469.	0.1	1

#	Article	IF	CITATIONS
109	Phylogenetic analysis of 3C protease (3Cpro) coding region of Foot-and-mouth disease virus type A. Acta Virologica, 2009, 53, 175-183.	0.8	1
110	Pathogenicity for Chickens of Avian Influenza Virus Strain H9N1 Isolated from Water Coot in India. International Journal of Poultry Science, 2009, 8, 252-255.	0.1	0
111	Assessment of Pathogenic Potential of Avian Influenza Viruses by MDCK Cell Culture. International Journal of Poultry Science, 2009, 8, 462-464.	0.1	1
112	Genetic analysis of H9N2 avian influenza viruses isolated from India. Archives of Virology, 2008, 153, 1433-1439.	2.1	43
113	Assessment of suitability of two serotype A candidate vaccine strains for inclusion in FMD vaccine in India. Veterinary Microbiology, 2008, 131, 65-72.	1.9	16
114	Development of a capsid based competitive inhibition enzyme-linked immunosorbent assay for detection of bovine immunodeficiency virus antibodies in cattle and buffalo serum. Journal of Virological Methods, 2008, 148, 218-225.	2.1	10
115	Development and evaluation of a MAb based competitive-ELISA using helicase domain of NS3 protein for sero-diagnosis of bovine viral diarrhea in cattle and buffaloes. Research in Veterinary Science, 2008, 85, 39-45.	1.9	14
116	Comparative genomics of serotype Asia 1 foot-and-mouth disease virus isolates from India sampled over the last two decades. Virus Research, 2008, 136, 16-29.	2.2	27
117	The safety and efficacy of the oral rabies vaccine SAG2 in Indian stray dogs. Vaccine, 2007, 25, 3409-3418.	3.8	65
118	Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of Chikungunya virus. Journal of Clinical Virology, 2007, 39, 188-193.	3.1	67
119	Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantitation of Japanese encephalitis virus. Journal of Virological Methods, 2007, 143, 73-80.	2.1	53
120	Analysis of the PB2 gene reveals that Indian H5N1 influenza virus belongs to a mixed-migratory bird sub-lineage possessing the amino acid lysine at position 627 of the PB2 protein. Archives of Virology, 2007, 152, 1637-1644.	2.1	15
121	Genetic typing of bovine viral diarrhoea virus isolates from India. Veterinary Microbiology, 2004, 104, 207-212.	1.9	45
122	Serotype C foot-and-mouth disease virus isolates from India belong to a separate so far not described lineage. Veterinary Microbiology, 2003, 92, 25-35.	1.9	7
123	Sequence analysis of the RNA polymerase gene of foot-and-mouth disease virus serotype Asia1. Virus Genes, 2001, 22, 21-26.	1.6	8
124	Genetic and antigenic analysis of type A foot-and-mouth disease viruses isolated in India during 1987-1996. Acta Virologica, 2001, 45, 13-21.	0.8	9
125	Genetic heterogeneity of Indian field isolates of foot-and-mouth disease virus serotype O as revealed by partial sequencing of 1D gene. Virus Research, 1998, 55, 115-127.	2.2	33
126	Antigenic features of foot-and-mouth disease virus serotype Asia1 as revealed by monoclonal antibodies and neutralization-escape mutants. Virus Research, 1997, 50, 107-117.	2.2	16

#	Article	IF	CITATIONS
127	One-tube and one-buffer system of RT-PCR amplification of 1D gene of foot-and-mouth disease virus field isolates. Acta Virologica, 1997, 41, 153-5.	0.8	13
128	Evaluation of primers for PCR amplification of RNA polymerase gene sequences of foot-and-mouth disease virus. Acta Virologica, 1997, 41, 333-6.	0.8	6
129	Assessment of variation in trypsin-sensitive neutralizable antigenic site of type O foot-and-mouth disease virus (FMDV) isolates using a Mab-binding inhibition assay. Journal of Immunological Methods, 1996, 192, 191-193.	1.4	0
130	Alteration of the trypsin-sensitive antigenic site of foot-and-mouth disease virus following direct binding to an ELISA plate. Journal of Immunological Methods, 1996, 192, 195-197.	1.4	1
131	Comparison of liquid-phase and Mab-blocking ELISA for assessment of the reactivity of monoclonal antibodies to foot-and-mouth disease virus. Journal of Immunological Methods, 1994, 172, 265-267.	1.4	1