
Catherine Jones Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. Nano Letters, 2022, 22, 644-651.	9.1	8
2	Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding. Journal of Colloid and Interface Science, 2022, 615, 50-58.	9.4	5
3	Opportunities for Electrocatalytic CO ₂ Reduction Enabled by Surface Ligands. Journal of the American Chemical Society, 2022, 144, 2829-2840.	13.7	60
4	Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. Nanoscale, 2022, 14, 5214-5226.	5.6	20
5	PLGA-Gold Nanocomposite: Preparation and Biomedical Applications. Pharmaceutics, 2022, 14, 660.	4.5	8
6	Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Analytical Chemistry, 2022, 94, 4737-4746.	6.5	8
7	Dynamic aqueous transformations of lithium cobalt oxide nanoparticle induce distinct oxidative stress responses of B. subtilis. Environmental Science: Nano, 2021, 8, 1614-1627.	4.3	3
8	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	7.4	82
9	Nanoparticles Interfere with Chemotaxis: An Example of Nanoparticles as Molecular "Knockouts―at the Cellular Level. ACS Nano, 2021, 15, 8813-8825.	14.6	6
10	Surface-Enhanced Raman Spectroscopy-Scanning Electrochemical Microscopy: Observation of Real-Time Surface pH Perturbations. Analytical Chemistry, 2021, 93, 7792-7796.	6.5	12
11	Large scale self-assembly of plasmonic nanoparticles on deformed graphene templates. Scientific Reports, 2021, 11, 12232.	3.3	10
12	Size Effects in Gold Nanorod Light-to-Heat Conversion under Femtosecond Illumination. Journal of Physical Chemistry C, 2021, 125, 16268-16278.	3.1	18
13	How Do Proteins Associate with Nanoscale Metal–Organic Framework Surfaces?. Langmuir, 2021, 37, 9910-9919.	3.5	9
14	Ensemble effects in Cu/Au ultrasmall nanoparticles control the branching point for C1 selectivity during CO ₂ electroreduction. Chemical Science, 2021, 12, 9146-9152.	7.4	9
15	Reciprocal redox interactions of lithium cobalt oxide nanoparticles with nicotinamide adenine dinucleotide (NADH) and glutathione (CSH): toward a mechanistic understanding of nanoparticle-biological interactions. Environmental Science: Nano, 2021, 8, 1749-1760.	4.3	7
16	Controlling the Spatial and Momentum Distributions of Plasmonic Carriers: Volume <i>vs</i> Surface Effects. ACS Nano, 2021, 15, 1566-1578.	14.6	15
17	Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. Nanoscale, 2020, 12, 21172-21187.	5.6	7
18	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0

#	Article	IF	CITATIONS
19	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
20	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	Ο
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	Ο
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
38	Interaction of Alpha-Synuclein and Its Mutants with Rigid Lipid Vesicle Mimics of Varying Surface Curvature. ACS Nano, 2020, 14, 10153-10167.	14.6	16
39	Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Scientific Reports, 2020, 10, 13320.	3.3	8
40	Effect of surface ligands on gold nanocatalysts for CO ₂ reduction. Chemical Science, 2020, 11, 12298-12306.	7.4	24
41	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27854-27861.	7.1	24
42	Ligand Length and Surface Curvature Modulate Nanoparticle Surface Heterogeneity and Electrostatics. Journal of Physical Chemistry C, 2020, 124, 24513-24525.	3.1	8
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
46	A golden time for nanotechnology. MRS Bulletin, 2020, 45, 387-393.	3.5	6
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
54	Gold nanorod impact on mechanical properties of stretchable hydrogels. Soft Matter, 2020, 16, 6582-6590.	2.7	7

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
67	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
68	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
69	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
70	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
71	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
72	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0

#	Article	IF	CITATIONS
73	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
75	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
79	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
81	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
82	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
83	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
84	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
85	Surface Coating Structure and Its Interaction with Cytochrome <i>c</i> in EG ₆ -Coated Nanoparticles Varies with Surface Curvature. Langmuir, 2020, 36, 5030-5039.	3.5	10
86	Facile Functionalization of Gold Nanoparticles with PLGA Polymer Brushes and Efficient Encapsulation into PLGA Nanoparticles: Toward Spatially Precise Bioimaging of Polymeric Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800414.	2.3	18
87	Quantitative Imaging of Organic Ligand Density on Anisotropic Inorganic Nanocrystals. Nano Letters, 2019, 19, 6308-6314.	9.1	50
88	Quantitative Chemical Mapping of Anisotropic Molecular Distributions on Gold Nanorods. Microscopy and Microanalysis, 2019, 25, 1772-1773.	0.4	0
89	Virus-Sized Gold Nanorods: Plasmonic Particles for Biology. Accounts of Chemical Research, 2019, 52, 2124-2135.	15.6	54
90	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2

#	Article	IF	CITATIONS
91	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
92	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1
93	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
94	Defects in Self-Assembled Monolayers on Nanoparticles Prompt Phospholipid Extraction and Bilayer-Curvature-Dependent Deformations. Journal of Physical Chemistry C, 2019, 123, 27951-27958.	3.1	11
95	Young Scientists Virtual Special Issue. Journal of Physical Chemistry C, 2019, 123, 20689-20690.	3.1	0
96	Young Scientists Virtual Special Issue. Journal of Physical Chemistry A, 2019, 123, 7335-7336.	2.5	1
97	Young Scientists Virtual Special Issue. Journal of Physical Chemistry B, 2019, 123, 7241-7242.	2.6	0
98	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry B, 2019, 123, 1-9.	2.6	2
99	Two-Phase Synthesis of Gold–Copper Bimetallic Nanoparticles of Tunable Composition: Toward Optimized Catalytic CO ₂ Reduction. ACS Applied Nano Materials, 2019, 2, 3989-3998.	5.0	22
100	Preferential Binding of Cytochrome <i>c</i> to Anionic Ligand-Coated Gold Nanoparticles: A Complementary Computational and Experimental Approach. ACS Nano, 2019, 13, 6856-6866.	14.6	31
101	Implications of aspect ratio on the uptake and nanotoxicity of gold nanomaterials. NanoImpact, 2019, 14, 100153.	4.5	8
102	Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. Nano Letters, 2019, 19, 1938-1943.	9.1	11
103	Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. Journal of the American Chemical Society, 2019, 141, 4316-4327.	13.7	66
104	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry C, 2019, 123, 1-9.	3.1	3
105	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry A, 2019, 123, 1-9.	2.5	2
106	Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm. Chemistry of Materials, 2018, 30, 1427-1435.	6.7	161
107	Using an environmentally-relevant panel of Gram-negative bacteria to assess the toxicity of polyallylamine hydrochloride-wrapped gold nanoparticles. Environmental Science: Nano, 2018, 5, 279-288.	4.3	32
108	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry A, 2018, 122, 1-7.	2.5	1

#	Article	IF	CITATIONS
109	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 1-7.	3.1	2
110	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 1-7.	2.6	2
111	Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nature Nanotechnology, 2018, 13, 253-259.	31.5	51
112	New Sections for <i>JPC A</i> / <i>B</i> / <i>C</i> . Journal of Physical Chemistry A, 2018, 122, 2611-2611.	2.5	0
113	New Sections for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 5215-5215.	3.1	0
114	New Sections for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 2703-2703.	2.6	0
115	Density, Structure, and Stability of Citrate ^{3–} and H ₂ citrate [–] on Bare and Coated Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 28393-28404.	3.1	23
116	Quantification of Lipid Corona Formation on Colloidal Nanoparticles from Lipid Vesicles. Analytical Chemistry, 2018, 90, 14387-14394.	6.5	41
117	Lipid Corona Formation from Nanoparticle Interactions with Bilayers. CheM, 2018, 4, 2709-2723.	11.7	46
118	Quantitative Chemical Mapping of Soft-Hard Interfaces on Gold Nanorods. Microscopy and Microanalysis, 2018, 24, 1674-1675.	0.4	0
119	Density, Elastic Constants, and Thermal Conductivity of Interfacially Polymerized Polyamide Films for Reverse Osmosis Membranes. ACS Applied Nano Materials, 2018, 1, 5008-5018.	5.0	18
120	Layer-by-Layer Synthesis of Conformal Metal–Organic Framework Shells on Gold Nanorods. Chemistry of Materials, 2018, 30, 7255-7261.	6.7	34
121	Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. Langmuir, 2018, 34, 10793-10805.	3.5	24
122	Plasmon-enhanced upconversion: engineering enhancement and quenching at nano and macro scales. Optical Materials Express, 2018, 8, 3787.	3.0	13
123	(Keynote) Surfactant and Halide Control in Gold Nanorod Synthesis. ECS Meeting Abstracts, 2018, , .	0.0	0
124	Growth-Based Bacterial Viability Assay for Interference-Free and High-Throughput Toxicity Screening of Nanomaterials. Analytical Chemistry, 2017, 89, 2057-2064.	6.5	45
125	Sulfate-Mediated End-to-End Assembly of Gold Nanorods. Langmuir, 2017, 33, 1486-1495.	3.5	31
126	Influence of gold nanoparticle surface chemistry and diameter upon Alzheimer's disease amyloid-β protein aggregation. Journal of Biological Engineering, 2017, 11, 5.	4.7	63

#	Article	IF	CITATIONS
127	Introducing Students to Surface Modification and Phase Transfer of Nanoparticles with a Laboratory Experiment. Journal of Chemical Education, 2017, 94, 769-774.	2.3	9
128	Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes. ACS Nano, 2017, 11, 5489-5499.	14.6	57
129	Research highlights: investigating the role of nanoparticle surface charge in nano–bio interactions. Environmental Science: Nano, 2017, 4, 741-746.	4.3	17
130	Quantification of Free Polyelectrolytes Present in Colloidal Suspension, Revealing a Source of Toxic Responses for Polyelectrolyte-Wrapped Gold Nanoparticles. Analytical Chemistry, 2017, 89, 1823-1830.	6.5	29
131	Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments. Langmuir, 2017, 33, 1891-1907.	3.5	154
132	New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjugate Chemistry, 2017, 28, 135-152.	3.6	95
133	Virtual Issue on Metal-Halide Perovskite Nanocrystals—A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	6.7	16
134	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry C, 2017, 121, 23849-23851.	3.1	0
135	Nanomaterial Probes in the Environment: Gold Nanoparticle Soil Retention and Environmental Stability as a Function of Surface Chemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 11451-11458.	6.7	22
136	A Demonstration of Le Chatelier's Principle on the Nanoscale. ACS Central Science, 2017, 3, 1096-1102.	11.3	28
137	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry A, 2017, 121, 8185-8187.	2.5	0
138	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry Letters, 2017, 8, 5306-5308.	4.6	0
139	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry B, 2017, 121, 9983-9985.	2.6	0
140	What is "New Physical Insight� Answers for the Colloidal Nanoplasmonic, Nanobio Community and Others. Journal of Physical Chemistry C, 2017, 121, 12979-12979.	3.1	0
141	Oxidation State of Capping Agent Affects Spatial Reactivity on Gold Nanorods. Journal of the American Chemical Society, 2017, 139, 9851-9854.	13.7	49
142	Protein Adsorption to Charged Gold Nanospheres as a Function of Protein Deformability. Langmuir, 2017, 33, 7751-7761.	3.5	45
143	In solution SERS sensing using mesoporous silica-coated gold nanorods. Analyst, The, 2016, 141, 5088-5095.	3.5	49
144	Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media. Water Research, 2016, 99, 7-15.	11.3	36

#	Article	IF	CITATIONS
145	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	10.0	191
146	Surface Chemistry of Gold Nanorods. Langmuir, 2016, 32, 9905-9921.	3.5	156
147	One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proceedings of the United States of America, 2016, 113, 13318-13323.	7.1	124
148	On Electronic and Charge Interference in Second Harmonic Generation Responses from Gold Metal Nanoparticles at Supported Lipid Bilayers. Journal of Physical Chemistry C, 2016, 120, 20659-20667.	3.1	29
149	Seed mediated growth of gold nanorods: towards nanorod matryoshkas. Faraday Discussions, 2016, 191, 9-33.	3.2	45
150	Anisotropic Nanoparticles and Anisotropic Surface Chemistry. Journal of Physical Chemistry Letters, 2016, 7, 632-641.	4.6	162
151	Editorial for January 2016 for JPC A/B/C. Journal of Physical Chemistry A, 2016, 120, 1-4.	2.5	2
152	Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sensors, 2016, 1, 17-21.	7.8	55
153	Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 4691-4716.	3.1	778
154	Editorial for January 2016 for <i>JPC A/B/C</i> . Journal of Physical Chemistry B, 2016, 120, 1-4.	2.6	3
155	Editorial for January 2016 for JPC A/B/C. Journal of Physical Chemistry C, 2016, 120, 1-4.	3.1	4
156	Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution. ACS Applied Materials & Interfaces, 2016, 8, 10581-10589.	8.0	50
157	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	4.3	53
158	Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environmental Science: Nano, 2016, 3, 45-55.	4.3	68
159	Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Central Science, 2015, 1, 117-123.	11.3	121
160	Editorial for January 2015 for <i>JPC A/B/C</i> . Journal of Physical Chemistry A, 2015, 119, 1-4.	2.5	4
161	Editorial for January 2015 for <i>JPC A/B/C</i> . Journal of Physical Chemistry B, 2015, 119, 1-4.	2.6	1
162	Best Practices for the Reporting of Colloidal Inorganic Nanomaterials. Chemistry of Materials, 2015, 27, 4911-4913.	6.7	64

#	Article	IF	CITATIONS
163	Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chemical Science, 2015, 6, 5186-5196.	7.4	203
164	Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. Environmental Science & Technology, 2015, 49, 10642-10650.	10.0	103
165	Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environmental Science: Nano, 2015, 2, 615-629.	4.3	38
166	Gold Nanorods Indirectly Promote Migration of Metastatic Human Breast Cancer Cells in Three-Dimensional Cultures. ACS Nano, 2015, 9, 6801-6816.	14.6	22
167	Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy. Nanoscale, 2015, 7, 8766-8775.	5.6	30
168	A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Crystal Growth and Design, 2015, 15, 1968-1974.	3.0	52
169	Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquatic Toxicology, 2015, 162, 1-9.	4.0	77
170	Magnetic, Fluorescent, and Copolymeric Silicone Microspheres. Advanced Science, 2015, 2, 1500114.	11.2	10
171	Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. ACS Applied Materials & Interfaces, 2015, 7, 24915-24925.	8.0	31
172	Control of Protein Orientation on Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 21035-21043.	3.1	75
173	Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry. Nanoscale, 2015, 7, 1349-1362.	5.6	28
174	Quantitative Determination of Ligand Densities on Nanomaterials by X-ray Photoelectron Spectroscopy. ACS Applied Materials & amp; Interfaces, 2015, 7, 1720-1725.	8.0	79
175	Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. Journal of Physical Chemistry C, 2015, 119, 534-546.	3.1	77
176	Variation of Protein Corona Composition of Gold Nanoparticles Following Plasmonic Heating. Nano Letters, 2014, 14, 6-12.	9.1	184
177	Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano, 2014, 8, 3107-3122.	14.6	255
178	Anisotropic Noble Metal Nanocrystal Growth: The Role of Halides. Chemistry of Materials, 2014, 26, 34-43.	6.7	340
179	Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 906-911.	7.1	96
180	Facile phase transfer of gold nanoparticles from aqueous solution to organic solvents with thiolated poly(ethylene glycol). RSC Advances, 2014, 4, 52676-52679.	3.6	53

#	Article	IF	CITATIONS
181	Editorial for January 2014 for JPC A/B/C. Journal of Physical Chemistry B, 2014, 118, 1-3.	2.6	8
182	Microfluidic-SERS devices for one shot limit-of-detection. Analyst, The, 2014, 139, 3227-3234.	3.5	37
183	Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to <i>Daphnia magna</i> . Environmental Science: Nano, 2014, 1, 260-270.	4.3	143
184	EFRC Feature Articles. Journal of Physical Chemistry C, 2014, 118, 13329-13329.	3.1	0
185	Observation of Molecular Diffusion in Polyelectrolyte-Wrapped SERS Nanoprobes. Langmuir, 2014, 30, 8931-8937.	3.5	14
186	Computational Study of the Surfaceâ€Enhanced Raman Scattering from Silicaâ€Coated Silver Nanowires. Photochemistry and Photobiology, 2014, 90, 415-418.	2.5	8
187	Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. ACS Nano, 2014, 8, 8392-8406.	14.6	356
188	α-Synuclein's Adsorption, Conformation, and Orientation on Cationic Gold Nanoparticle Surfaces Seeds Global Conformation Change. Journal of Physical Chemistry B, 2014, 118, 3559-3571.	2.6	38
189	Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability. Journal of Chemical Education, 2014, 91, 1600-1605.	2.3	21
190	Nanoplasmonics. Chemical Society Reviews, 2014, 43, 3820.	38.1	107
191	Tuning Cellular Response to Nanoparticles via Surface Chemistry and Aggregation. Small, 2014, 10, 1642-1651.	10.0	52
192	Homing Peptide-Conjugated Gold Nanorods: The Effect of Amino Acid Sequence Display on Nanorod Uptake and Cellular Proliferation. Bioconjugate Chemistry, 2014, 25, 1162-1171.	3.6	29
193	Adsorption of Cellular Proteins to Polyelectrolyte-Functionalized Gold Nanorods: A Mechanism for Nanoparticle Regulation of Cell Phenotype?. PLoS ONE, 2014, 9, e86670.	2.5	27
194	Patchy silica-coated silver nanowires as SERS substrates. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	23
195	Study of Wild-Type α-Synuclein Binding and Orientation on Gold Nanoparticles. Langmuir, 2013, 29, 4603-4615.	3.5	91
196	Surface Charge Controls the Fate of Au Nanorods in Saline Estuaries. Environmental Science & Technology, 2013, 47, 12844-12851.	10.0	31
197	Nanoparticle–Protein Interactions: A Thermodynamic and Kinetic Study of the Adsorption of Bovine Serum Albumin to Gold Nanoparticle Surfaces. Langmuir, 2013, 29, 14984-14996.	3.5	216
198	Future Plasmonic Nanomaterials. Journal of Physical Chemistry Letters, 2013, 4, 3152-3152.	4.6	0

#	Article	IF	CITATIONS
199	Editorial for January 2013 for JPC A/B/C. Journal of Physical Chemistry C, 2013, 117, 1-2.	3.1	22
200	The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface. Accounts of Chemical Research, 2013, 46, 650-661.	15.6	293
201	Off-Resonant Two-Photon Absorption Cross-Section Enhancement of an Organic Chromophore on Gold Nanorods. Journal of Physical Chemistry Letters, 2013, 4, 749-752.	4.6	18
202	The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials, 2013, 25, 1250-1261.	6.7	578
203	High-Index Facets in Gold Nanocrystals Elucidated by Coherent Electron Diffraction. Nano Letters, 2013, 13, 1840-1846.	9.1	26
204	Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere, 2013, 91, 93-98.	8.2	49
205	Toxicity of Engineered Nanoparticles in the Environment. Analytical Chemistry, 2013, 85, 3036-3049.	6.5	604
206	Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought. ACS Nano, 2013, 7, 2099-2105.	14.6	126
207	Nanovacuums: Nanoparticle Uptake and Differential Cellular Migration on a Carpet of Nanoparticles. Nano Letters, 2013, 13, 2295-2302.	9.1	62
208	A Simple Millifluidic Benchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes. ACS Nano, 2013, 7, 4135-4150.	14.6	210
209	Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension. Journal of Physical Chemistry C, 2013, 117, 10677-10682.	3.1	23
210	Competition Between Extinction and Enhancement in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 1193-1196.	4.6	28
211	Ultrafast Thermal Analysis of Surface Functionalized Gold Nanorods in Aqueous Solution. ACS Nano, 2013, 7, 589-597.	14.6	69
212	Editorial for January 2013 for <i>JPC A/B/C</i> . Journal of Physical Chemistry A, 2013, 117, 1-2.	2.5	7
213	Editorial for January 2013 for JPC A/B/C. Journal of Physical Chemistry B, 2013, 117, 1-2.	2.6	4
214	The Gold Nanorod-Biology Interface: From Proteins to Cells to Tissue. Current Physical Chemistry, 2013, 3, 128-135.	0.2	5
215	High-Aspect-Ratio Gold Nanorods: Their Synthesis and Application to Image Cell-Induced Strain Fields in Collagen Films. Methods in Molecular Biology, 2013, 1026, 1-20.	0.9	4
216	Plasmonic Enhancement of the Two Photon Absorption Cross Section of an Organic Chromophore Using Polyelectrolyte-Coated Gold Nanorods. Langmuir, 2012, 28, 9147-9154.	3.5	50

#	Article	IF	CITATIONS
217	Face-Dependent Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy of 2,2′-Bipyridine on Au(100) and Au(111). Journal of Physical Chemistry C, 2012, 116, 5128-5140.	3.1	68
218	Editorial for January 2012 for JPC A/B/C. Journal of Physical Chemistry A, 2012, 116, 1-2.	2.5	6
219	New Subsections for JPC A/B/C and JPC Letters. Journal of Physical Chemistry Letters, 2012, 3, 1062-1062.	4.6	1
220	New Subsections for JPC A/B/C and JPC Letters. Journal of Physical Chemistry C, 2012, 116, 7611-7611.	3.1	0
221	Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters That Are Derived from Surface-Anchored Molecular Precursors. Journal of Physical Chemistry C, 2012, 116, 1429-1438.	3.1	31
222	Editorial for January 2012 for <i>JPC A</i> / <i>B</i> / <i>C</i> . Journal of Physical Chemistry B, 2012, 116, 1-2.	2.6	8
223	New Subsections for <i>JPC A/B/C</i> and <i>JPC Letters</i> . Journal of Physical Chemistry B, 2012, 116, 4117-4117.	2.6	0
224	New Subsections for <i>JPC A/B/C</i> and <i>JPC Letters</i> . Journal of Physical Chemistry A, 2012, 116, 3507-3507.	2.5	0
225	Applications of Colloidal Inorganic Nanoparticles: From MedicineÂtoÂEnergy. Journal of the American Chemical Society, 2012, 134, 15607-15620.	13.7	388
226	The Early Life of Gold Nanorods: Temporal Separation of Anisotropic and Isotropic Growth Modes. Journal of Cluster Science, 2012, 23, 799-809.	3.3	15
227	Heat Transport between Au Nanorods, Surrounding Liquids, and Solid Supports. Journal of Physical Chemistry C, 2012, 116, 26335-26341.	3.1	47
228	Evidence for Patchy Lipid Layers on Gold Nanoparticle Surfaces. Langmuir, 2012, 28, 5404-5416.	3.5	44
229	The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 2012, 41, 2740-2779.	38.1	2,900
230	Uptake, distribution and toxicity of gold nanoparticles in tobacco (<i>Nicotiana xanthi</i>) seedlings. Nanotoxicology, 2012, 6, 353-360.	3.0	192
231	Polyelectrolyte Wrapping Layers Control Rates of Photothermal Molecular Release from Gold Nanorods. Nano Letters, 2012, 12, 2982-2987.	9.1	68
232	Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Advanced Drug Delivery Reviews, 2012, 64, 190-199.	13.7	721
233	Clickable polyglycerol hyperbranched polymers and their application to gold nanoparticles and acid-labile nanocarriers. Chemical Communications, 2011, 47, 1279-1281.	4.1	53
234	Age-Dependent Expression of Collagen Receptors and Deformation of Type I Collagen Substrates by Rat Cardiac Fibroblasts. Microscopy and Microanalysis, 2011, 17, 555-562.	0.4	16

#	Article	IF	CITATIONS
235	Metallic Nanoantennae and their Use in Organic-Polymer Photovoltaics. Journal of Cluster Science, 2011, 22, 59-64.	3.3	3
236	Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells. Journal of Nanoparticle Research, 2011, 13, 6347-6364.	1.9	26
237	Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Current Opinion in Colloid and Interface Science, 2011, 16, 128-134.	7.4	219
238	The Many Faces of Gold Nanorods. Journal of Physical Chemistry Letters, 2010, 1, 2867-2875.	4.6	247
239	Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?. Journal of Nanoparticle Research, 2010, 12, 2313-2333.	1.9	1,300
240	Cation Exchange on the Surface of Gold Nanorods with a Polymerizable Surfactant: Polymerization, Stability, and Toxicity Evaluation. Langmuir, 2010, 26, 9328-9333.	3.5	87
241	Polyelectrolyte Coating Provides a Facile Route to Suspend Gold Nanorods in Polar Organic Solvents and Hydrophobic Polymers. ACS Applied Materials & amp; Interfaces, 2010, 2, 3417-3421.	8.0	53
242	Synthesis and Characterization of Silver–Platinum Bimetallic Nanowires and Platinum Nanotubes. Journal of Cluster Science, 2009, 20, 319-330.	3.3	26
243	Light scattering of interacting gold nanorods. Physica Status Solidi (B): Basic Research, 2009, 246, 2771-2773.	1.5	3
244	Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects. Small, 2009, 5, 701-708.	10.0	927
245	Transfer of gold nanoparticles from the water column to the estuarine food web. Nature Nanotechnology, 2009, 4, 441-444.	31.5	307
246	Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials, 2009, 30, 5639-5648.	11.4	51
247	Spatial Control of Chemistry on the Inside and Outside of Inorganic Nanocrystals. ACS Nano, 2009, 3, 770-774.	14.6	15
248	Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte. Journal of Physical Chemistry A, 2009, 113, 3973-3978.	2.5	85
249	Gold Nanoparticles with a Polymerizable Surfactant Bilayer: Synthesis, Polymerization, and Stability Evaluation. Langmuir, 2009, 25, 13874-13879.	3.5	59
250	Glycosaminoglycan-functionalized gold nanorods: interactions with cardiac cells and type I collagen. Journal of Materials Chemistry, 2009, 19, 6332.	6.7	28
251	Diffusion Linked Solidification Model of Axisymmetric Growth of Gold Nanorods. Solid Mechanics and Its Applications, 2009, , 199-210.	0.2	0
252	Iron Oxide Coated Gold Nanorods: Synthesis, Characterization, and Magnetic Manipulation. Langmuir, 2008, 24, 6232-6237.	3.5	77

#	Article	IF	CITATIONS
253	Sustainability as an emerging design criterion in nanoparticle synthesis and applications. Journal of Materials Chemistry, 2008, 18, 2173.	6.7	193
254	Azide-Derivatized Gold Nanorods:  Functional Materials for "Click―Chemistry. Langmuir, 2008, 24, 266-272.	3.5	163
255	Chemical sensing and imaging with metallic nanorods. Chemical Communications, 2008, , 544-557.	4.1	496
256	Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research, 2008, 41, 1721-1730.	15.6	1,637
257	Gold Nanorods as Nanoadmicelles: 1-Naphthol Partitioning into a Nanorod-Bound Surfactant Bilayer. Langmuir, 2008, 24, 10235-10239.	3.5	76
258	Nanoscale structure and dynamics of DNA. Physical Chemistry Chemical Physics, 2008, 10, 1229-1242.	2.8	47
259	One-pot synthesis of silica-coated magnetic plasmonic tracer nanoparticles. Chemical Communications, 2008, , 6140.	4.1	29
260	Targeted Photothermal Lysis of the Pathogenic Bacteria, <i>Pseudomonas aeruginosa</i> , with Gold Nanorods. Nano Letters, 2008, 8, 302-306.	9.1	467
261	The Effect of Gold Nanorods on Cell-Mediated Collagen Remodeling. Nano Letters, 2008, 8, 3409-3412.	9.1	45
262	Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Review B, 2008, 77, .	3.2	57
263	Using Gold Nanorods to Probe Cell-Induced Collagen Deformation. Nano Letters, 2007, 7, 116-119.	9.1	102
264	Photophysical Probes of DNA Sequence-Directed Structure and Dynamics. Advances in Photochemistry, 2007, , 145-217.	0.4	17
265	Surface morphology and step fluctuations on Ag nanowires. Surface Science, 2007, 601, 4939-4943.	1.9	23
266	Coumarin base-pair replacement as a fluorescent probe of ultrafast DNA dynamics. Tetrahedron, 2007, 63, 3450-3456.	1.9	42
267	Influence of the nature of quantum dot surface cations on interactions with DNA. Journal of Inorganic Biochemistry, 2007, 101, 559-564.	3.5	26
268	Plasmons spring into action. Nature Materials, 2007, 6, 259-260.	27.5	6
269	Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. Journal of Materials Chemistry, 2006, 16, 3929-3935.	6.7	168
270	One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry, 2006, 45, 7544-7554.	4.0	361

#	Article	IF	CITATIONS
271	Role of Monovalent Counterions in the Ultrafast Dynamics of DNA. Journal of Physical Chemistry B, 2006, 110, 13248-13255.	2.6	30
272	Ultrafast Dynamics in DNA:  "Fraying―at the End of the Helix. Journal of the American Chemical Society, 2006, 128, 6885-6892.	13.7	130
273	Tunable One-Dimensional Silverâ^'Silica Nanopeapod Architectures. Journal of Physical Chemistry B, 2006, 110, 7226-7231.	2.6	51
274	Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics, 2006, 8, 165-170.	2.8	438
275	Shape-Dependent Plasmon-Resonant Gold Nanoparticles. Small, 2006, 2, 636-639.	10.0	343
276	Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods. Journal of Physical Chemistry B, 2006, 110, 3990-3994.	2.6	652
277	Eu-Doped Silica Nanotubes: Synthesis and Optical Properties. Materials Research Society Symposia Proceedings, 2006, 922, 1.	0.1	1
278	Collagen Organization during Cardiac Fibroblastâ€mediated Collagen Gel Contraction. FASEB Journal, 2006, 20, LB57.	0.5	0
279	Thermal Decomposition of Generation-4 Polyamidoamine Dendrimer Films:Â Decomposition Catalyzed by Dendrimer-Encapsulated Pt Particles. Langmuir, 2005, 21, 3998-4006.	3.5	72
280	Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces. Advanced Materials, 2005, 17, 2173-2177.	21.0	131
281	Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. ChemInform, 2005, 36, no.	0.0	10
282	Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small, 2005, 1, 325-327.	10.0	2,190
283	Light scattering from gold nanorods: tracking material deformation. Nanotechnology, 2005, 16, 2601-2605.	2.6	36
284	Probing DNA Structure With Nanoparticles. , 2005, 303, 179-190.		6
285	Fine-Tuning the Shape of Gold Nanorods. Chemistry of Materials, 2005, 17, 3668-3672.	6.7	483
286	Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:Â Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry, 2005, 77, 3261-3266.	6.5	628
287	Rod-like Cu/La/O nanoparticles as a catalyst for phenol hydroxylation. Chemical Communications, 2005, , 5907.	4.1	14
288	AFM Characterization of Dendrimer-Stabilized Platinum Nanoparticles. Langmuir, 2005, 21, 3122-3131.	3.5	60

#	Article	IF	CITATIONS
289	Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes. Langmuir, 2005, 21, 2923-2929.	3.5	375
290	Power-Law Solvation Dynamics in DNA over Six Decades in Time. Journal of the American Chemical Society, 2005, 127, 7270-7271.	13.7	141
291	Anisotropic Metal Nanoparticles:Â Synthesis, Assembly, and Optical Applications. Journal of Physical Chemistry B, 2005, 109, 13857-13870.	2.6	2,820
292	Biotinâ^'Streptavidin-Induced Aggregation of Gold Nanorods:Â Tuning Rodâ^'Rod Orientation. Langmuir, 2005, 21, 10756-10762.	3.5	156
293	pH-Triggered Assembly of Gold Nanorods. Langmuir, 2005, 21, 2022-2026.	3.5	136
294	Polyelectrolyte-Coated Gold Nanorods:  Synthesis, Characterization and Immobilization. Chemistry of Materials, 2005, 17, 1325-1330.	6.7	387
295	Deposition of CTAB-Terminated Nanorods on Bacteria to Form Highly Conducting Hybrid Systems. Journal of the American Chemical Society, 2005, 127, 17600-17601.	13.7	190
296	Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures. MRS Bulletin, 2005, 30, 349-355.	3.5	169
297	Self-Organization of Metallic Nanorods into Liquid Crystalline Arrays. , 2005, , 515-524.		0
298	Effect of lesions on the dynamics of DNA on the picosecond and nanosecond timescales using a polarity sensitive probe. Nucleic Acids Research, 2004, 32, 2494-2507.	14.5	55
299	Seed-Mediated Synthesis of Gold Nanorods:Â Role of the Size and Nature of the Seed. Chemistry of Materials, 2004, 16, 3633-3640.	6.7	873
300	Optical Detection of Thymine Dinucleoside Monophosphate and Its cis-syn Photodimer by Inorganic Nanoparticles. Journal of Fluorescence, 2004, 14, 407-415.	2.5	12
301	Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir, 2004, 20, 6414-6420.	3.5	1,293
302	In Situ Attenuated Total Reflection Infrared Spectroscopy of Dendrimer-Stabilized Platinum Nanoparticles Adsorbed on Alumina. Journal of Physical Chemistry B, 2004, 108, 12911-12916.	2.6	49
303	Nanoindentation of Cu2O Nanocubes. Nano Letters, 2004, 4, 1903-1907.	9.1	168
304	Platinum Ion Uptake by Dendrimers:Â An NMR and AFM Study. Inorganic Chemistry, 2004, 43, 1421-1428.	4.0	70
305	Controlling the size of Cu2O nanocubes from 200 to 25 nm. Journal of Materials Chemistry, 2004, 14, 735.	6.7	182
306	Immobilization of Gold Nanorods onto Acid-Terminated Self-Assembled Monolayers via Electrostatic Interactions. Langmuir, 2004, 20, 7117-7122.	3.5	122

#	Article	IF	CITATIONS
307	Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 2004, 126, 8648-8649.	13.7	1,506
308	Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters, 2003, 3, 667-669.	9.1	585
309	Nanoindentation of Silver Nanowires. Nano Letters, 2003, 3, 1495-1498.	9.1	335
310	Solution-Phase Synthesis of Cu2O Nanocubes. Nano Letters, 2003, 3, 231-234.	9.1	627
311	An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Advanced Materials, 2003, 15, 414-416.	21.0	797
312	Preferential End-to-End Assembly of Gold Nanorods by Biotinâ^'Streptavidin Connectors. Journal of the American Chemical Society, 2003, 125, 13914-13915.	13.7	643
313	Sodium-Ion Binding to DNA:  Detection by Ultrafast Time-Resolved Stokes-Shift Spectroscopy. Journal of the American Chemical Society, 2003, 125, 11812-11813.	13.7	33
314	Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir, 2003, 19, 9065-9070.	3.5	568
315	Seeded and Non-Seeded Methods to Make Metallic Nanorods and Nanowires in Aqueous Solution. Materials Research Society Symposia Proceedings, 2003, 789, 35.	0.1	0
316	Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods. Langmuir, 2002, 18, 922-927.	3.5	226
317	A Fiber-Optic Fluorescence Sensor for Lithium Ion in Acetonitrile. Analytical Chemistry, 2002, 74, 4757-4762.	6.5	20
318	Complex Local Dynamics in DNA on the Picosecond and Nanosecond Time Scales. Physical Review Letters, 2002, 88, 158101.	7.8	129
319	Emission Spectral Properties of Cadmium Sulfide Nanoparticles with Multiphoton Excitation. Journal of Physical Chemistry B, 2002, 106, 5365-5370.	2.6	55
320	Liquid crystalline assemblies of ordered gold nanorods. Journal of Materials Chemistry, 2002, 12, 2909-2912.	6.7	191
321	MATERIALS SCIENCE: Nanocubes and Nanoboxes. Science, 2002, 298, 2139-2141.	12.6	442
322	Peer Reviewed: Optical Sensing with Quantum Dots. Analytical Chemistry, 2002, 74, 520 A-526 A.	6.5	442
323	Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir, 2002, 18, 10407-10410.	3.5	246
324	Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. Journal of Materials Chemistry, 2002, 12, 1765-1770.	6.7	908

#	Article	IF	CITATIONS
325	Solution-Phase Synthesis of Sub-10 nm Auâ^'Ag Alloy Nanoparticles. Nano Letters, 2002, 2, 1235-1237.	9.1	542
326	Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. Journal of Physical Chemistry B, 2001, 105, 4065-4067.	2.6	2,386
327	Oligonucleotide-Directed Assembly of Materials:  Defined Oligomers. Journal of the American Chemical Society, 2001, 123, 1828-1833.	13.7	84
328	Oligonucleotide Adsorption to Gold Nanoparticles:Â A Surface-Enhanced Raman Spectroscopy Study of Intrinsically Bent DNA. Journal of Physical Chemistry B, 2001, 105, 12609-12615.	2.6	188
329	A Two-Color Fluorescent Lithium Ion Sensor. Inorganic Chemistry, 2001, 40, 6080-6082.	4.0	43
330	Selective blue emission from an HPBO–Li+ complex in alkaline media. New Journal of Chemistry, 2001, 25, 1600-1604.	2.8	21
331	Specific fluorescence determination of lithium ion based on 2-(2-hydroxyphenyl)benzoxazole. Analyst, The, 2001, 126, 1499-1501.	3.5	15
332	Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafionâ"¢ membrane. Analytica Chimica Acta, 2001, 448, 1-8.	5.4	66
333	Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, , 617-618.	4.1	1,084
334	Preparation of Polystyrene- and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes. Nano Letters, 2001, 1, 601-603.	9.1	304
335	Seeding Growth for Size Control of 5â^40 nm Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.	3.5	1,230
336	Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chemistry of Materials, 2001, 13, 2313-2322.	6.7	641
337	<title>Inorganic nanoparticles as optical sensors of DNA</title> .,2001,,.		0
338	Recognition of hypermethylated triplet repeats in vitro by cationic nanoparticles. Journal of Biomedical Optics, 2001, 6, 111.	2.6	10
339	Advances in contrast agents, reporters, and detection. Journal of Biomedical Optics, 2001, 6, 106.	2.6	68
340	Ultrafast Dynamics in DNA. Springer Series in Chemical Physics, 2001, , 563-565.	0.2	0
341	Time-Resolved Spectral Observations of Cadmium-Enriched Cadmium Sulfide Nanoparticles and the Effects of DNA Oligomer Binding. Analytical Biochemistry, 2000, 280, 128-136.	2.4	99
342	Intrinsic Bending in GGCC Tracts as Probed by Fluorescence Resonance Energy Transfer. Analytical Biochemistry, 2000, 284, 99-106.	2.4	16

#	Article	IF	CITATIONS
343	Optical sensing properties of [Ru(CN)4dppz]2â^' (dppz=dipyrido[3,2-a:2′,3′-c]phenazine). Inorganica Chimi Acta, 2000, 298, 209-215.	ca 2.4	18
344	Aggregation Kinetics of Dendrimer-Stabilized CdS Nanoclusters. Langmuir, 2000, 16, 2621-2626.	3.5	70
345	<title>Detection of unusual DNA structures with nanoparticles</title> ., 2000, 3924, 10.		3
346	Synthesis and Self-Assembly of an Oligonucleotide-Modified Cyclobutadiene Complex. Organometallics, 2000, 19, 368-370.	2.3	16
347	Temperature- and Salt-Dependent Binding of Long DNA to Protein-Sized Quantum Dots:Â Thermodynamics of "Inorganic Proteinâ€â^DNA Interactions. Journal of the American Chemical Society, 2000, 122, 14-17.	13.7	159
348	Ultrafast dynamics in DNA. , 2000, , .		0
349	Luminescence Spectral Properties of CdS Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 7613-7620.	2.6	213
350	A Comparison of the Photophysical Properties of Thiolate-Capped CdS Quantum Dots with Thiolate-Capped CdS Molecular Clusters. Materials Research Society Symposia Proceedings, 1999, 571, 247.	0.1	2
351	Measurement of Local DNA Reorganization on the Picosecond and Nanosecond Time Scales. Journal of the American Chemical Society, 1999, 121, 11644-11649.	13.7	158
352	Synthesis and Solvent-Dependent Properties of Ru(acac)2dppz. Inorganic Chemistry, 1999, 38, 2536-2538.	4.0	24
353	Polyamineâ `'Quantum Dot Nanocomposites:Â Linear versus Starburst Stabilizer Architectures. Chemistry of Materials, 1999, 11, 3595-3601.	6.7	75
354	<title>Fiber optic imaging for in-situ chemical measurements</title> ., 1999, 3540, 210.		3
355	On the interaction of [Ru(phen)2dppz]2+ (dppz=dipyrido[3,2-a:2′,3′-c]phenazine) with different oligonucleotides. Journal of Inorganic Biochemistry, 1998, 69, 129-133.	3.5	50
356	A Blue-Emitting CdS/Dendrimer Nanocomposite. Advanced Materials, 1998, 10, 1083-1087.	21.0	245
357	Local Dynamics in DNA by Temperature-Dependent Stokes Shifts of an Intercalated Dye. Journal of the American Chemical Society, 1998, 120, 2449-2456.	13.7	86
358	Synthesis and DNA-Binding Properties of [Ru(NH3)4dppz]2+. Inorganic Chemistry, 1998, 37, 139-141.	4.0	316
359	<title>Dipyridophenazine complexes of Ru(II): versatile optical sensors for small and large
molecules</title> . Proceedings of SPIE, 1997, 2980, 473.	0.8	3
360	Optical Properties of [Ru(phen)2dppz]2+as a Function of Nonaqueous Environment. Inorganic Chemistry, 1997, 36, 962-965.	4.0	158

#	Article	IF	CITATIONS
361	Preferential Adsorption of a "Kinked―DNA to a Neutral Curved Surface: Comparisons to and Implications for Nonspecific DNAâ°'Protein Interactions. Journal of the American Chemical Society, 1996, 118, 7028-7032.	13.7	98
362	Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+. The Journal of Physical Chemistry, 1996, 100, 4551-4555.	2.9	638
363	CdS nanoclusters stabilized by thiolate ligands: A mini-review. Journal of Cluster Science, 1996, 7, 341-350.	3.3	21
364	Metallointercalators as Probes of the DNA π-way. Advances in Chemistry Series, 1996, , 449-469.	0.6	10
365	Quantum Dots as Inorganic DNA-Binding Proteins. Materials Research Society Symposia Proceedings, 1996, 452, 597.	0.1	12
366	<title>Novel ruthenium cyanide complex for optical sensing</title> . , 1995, , .		1
367	Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides. Journal of the American Chemical Society, 1995, 117, 9099-9100.	13.7	206
368	Fast photoinduced electron transfer through DNA intercalation Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5315-5319.	7.1	159
369	[25] Ruthenium complexes as luminescent reporters of DNA. Methods in Enzymology, 1993, 226, 576-594.	1.0	94
370	Chemical Sensing Applications of Semiconductor Photoluminescence. , 1991, , 317-331.		0
371	The coordination of mono- and diphosphines to the surface of cadmium selenide. Polyhedron, 1990, 9, 1913-1918.	2.2	15
372	Surfaceâ€Bound Adducts of CdSe with EPh3 (  E  a€‰a€‱ n  ,  Pâ€% 220C-222C.	‰â€‰,â€ 2.9	‰As ). Jo 1

373	Photoluminescence-based correlation of semiconductor electric field thickness with adsorbate Hammett substituent constants. Adsorption of aniline derivatives onto cadmium selenide. Journal of the American Chemical Society, 1990, 112, 8344-8348.	13.7	49	
-----	--	------	----	--