
Gilles Crambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor Signaling under Hypertonicity. Cells, 2022, 11, 1377.	4.1	4
2	Implication of GDF15 in the Context of a Renal Adaptation to a Low Potassium Diet. FASEB Journal, 2022, 36, .	0.5	0
3	Acidosisâ€induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiologica, 2021, 232, e13661.	3.8	10
4	A variant of ASIC2 mediates sodium retention in nephrotic syndrome. JCI Insight, 2021, 6, .	5.0	4
5	Increased colonic K+ excretion through inhibition of the H,K-ATPase type 2 helps reduce plasma K+ level in a murine model of nephronic reduction. Scientific Reports, 2021, 11, 1833.	3.3	1
6	Adrenal adaptation in potassium-depleted men: role of progesterone?. Nephrology Dialysis Transplantation, 2020, 35, 1901-1908.	0.7	9
7	H,K-ATPase type 2 regulates gestational extracellular compartment expansion and blood pressure in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R320-R328.	1.8	8
8	Medullary and cortical thick ascending limb: similarities and differences. American Journal of Physiology - Renal Physiology, 2020, 318, F422-F442.	2.7	23
9	H,K-ATPases in Epithelia. Physiology in Health and Disease, 2020, , 425-445.	0.3	1
10	ANP-stimulated Na+ secretion in the collecting duct prevents Na+ retention in the renal adaptation to acid load. American Journal of Physiology - Renal Physiology, 2019, 317, F435-F443.	2.7	4
11	Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Scientific Reports, 2019, 9, 6516.	3.3	61
12	Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion. Scientific Reports, 2019, 9, 19540.	3.3	11
13	Proliferation of renal intercalated cells type A after dietary K restriction involves GDF15 and the stimulation of the H,Kâ€ATPase type 2. FASEB Journal, 2019, 33, 862.24.	0.5	0
14	Increased expression of ATP12A proton pump in cystic fibrosis airways. JCI Insight, 2018, 3, .	5.0	43
15	Versatility of NaCl transport mechanisms in the cortical collecting duct. American Journal of Physiology - Renal Physiology, 2017, 313, F1254-F1263.	2.7	17
16	Glucagon actions on the kidney revisited: possible role in potassium homeostasis. American Journal of Physiology - Renal Physiology, 2016, 311, F469-F486.	2.7	32
17	H,K-ATPase type 2 contributes to salt-sensitive hypertension induced by K+ restriction. Pflugers Archiv European Journal of Physiology, 2016, 468, 1673-1683.	2.8	15
18	The renal cortical collecting duct: a secreting epithelium?. Journal of Physiology, 2016, 594, 5991-6008.	2.9	23

GILLES CRAMBERT

#	Article	IF	CITATIONS
19	H-K-ATPase type 2: relevance for renal physiology and beyond. American Journal of Physiology - Renal Physiology, 2014, 306, F693-F700.	2.7	40
20	A link between fertility and K+ homeostasis: role of the renal H,K-ATPase type 2. Pflugers Archiv European Journal of Physiology, 2013, 465, 1149-1158.	2.8	19
21	Renal Proteinase-activated Receptor 2, a New Actor in the Control of Blood Pressure and Plasma Potassium Level. Journal of Biological Chemistry, 2013, 288, 10124-10131.	3.4	23
22	Regulation of pendrin by cAMP: possible involvement in β-adrenergic-dependent NaCl retention. American Journal of Physiology - Renal Physiology, 2012, 302, F1180-F1187.	2.7	30
23	Circadian expression of H,Kâ€ATPase type 2 contributes to the stability of plasma K ⁺ levels. FASEB Journal, 2012, 26, 2859-2867.	0.5	26
24	Expression Profile of Nuclear Receptors along Male Mouse Nephron Segments Reveals a Link between ERRβ and Thick Ascending Limb Function. PLoS ONE, 2012, 7, e34223.	2.5	22
25	Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium. Kidney International, 2011, 80, 256-262.	5.2	43
26	Mapping of sex hormone receptors and their modulators along the nephron of male and female mice. FEBS Letters, 2009, 583, 1644-1648.	2.8	29
27	Membrane progestin receptors α and γ in renal epithelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2234-2240.	4.1	18
28	FXYD3 (Mat-8), a New Regulator of Na,K-ATPase. Molecular Biology of the Cell, 2005, 16, 2363-2371.	2.1	64
29	FXYD7, the First Brain―and Isoformâ€Specific Regulator of Na,Kâ€ATPase. Annals of the New York Academy of Sciences, 2003, 986, 444-448.	3.8	15
30	Electrogenicity of Na,K- and H,K-ATPase Activity and Presence of a Positively Charged Amino Acid in the Fifth Transmembrane Segment. Journal of Biological Chemistry, 2003, 278, 19237-19244.	3.4	51
31	FXYD Proteins: New Tissue-Specific Regulators of the Ubiquitous Na,K-ATPase. Science Signaling, 2003, 2003, re1-re1.	3.6	104
32	Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11476-11481.	7.1	249
33	βm, a Structural Member of the X,K-ATPase β Subunit Family, Resides in the ER and Does Not Associate with Any Known X,K-ATPase α Subunitâ€. Biochemistry, 2002, 41, 6723-6733.	2.5	14
34	Human nongastric H ⁺ -K ⁺ -ATPase: transport properties of ATP1al1 assembled with different β-subunits. American Journal of Physiology - Cell Physiology, 2002, 283, C305-C314.	4.6	37
35	<i>Bufo marinus</i> bladder H-K-ATPase carries out electroneutral ion transport. American Journal of Physiology - Renal Physiology, 2001, 281, F869-F874.	2.7	18
36	Transport and Pharmacological Properties of Nine Different Human Na,K-ATPase Isozymes. Journal of Biological Chemistry, 2000, 275, 1976-1986.	3.4	373

#	Article	IF	CITATIONS
37	Intersubunit Interactions in Human X,K-ATPases:Â Role of Membrane Domains M9 and M10 in the Assembly Process and Association Efficiency of Human, Nongastric H,K-ATPase α Subunits (ATP1al1) with Known β Subunitsâ€. Biochemistry, 2000, 39, 12688-12698.	2.5	29