Maria Themeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9886204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. , 2022, 10, e003486.		21
2	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
3	Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma. International Journal of Molecular Sciences, 2021, 22, 1096.	4.1	25
4	Bone Marrow Mesenchymal Stromal Cells Can Render Multiple Myeloma Cells Resistant to Cytotoxic Machinery of CAR T Cells through Inhibition of Apoptosis. Clinical Cancer Research, 2021, 27, 3793-3803.	7.0	27
5	Determinants of Response and Mechanisms of Resistance of CAR T-cell Therapy in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 302-318.	5.0	40
6	CD38-specific Chimeric Antigen Receptor Expressing Natural Killer KHYG-1 Cells: A Proof of Concept for an "Off the Shelf―Therapy for Multiple Myeloma. HemaSphere, 2021, 5, e596.	2.7	11
7	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	12.4	49
8	TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment. Haematologica, 2020, 105, 1306-1316.	3.5	9
9	Rapid and Reproducible Differentiation of Hematopoietic and T Cell Progenitors From Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 577464.	3.7	10
10	iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports, 2020, 14, 300-311.	4.8	18
11	Protocol for Isolation, Stimulation and Functional Profiling of Primary and iPSC-derived Human NK Cells. Bio-protocol, 2020, 10, e3845.	0.4	3
12	The tumor vasculature an attractive CAR T cell target in solid tumors. Angiogenesis, 2019, 22, 473-475.	7.2	24
13	Induced Pluripotent Stem Cell (iPSC)–Derived Lymphocytes for Adoptive Cell Immunotherapy: Recent Advances and Challenges. Current Hematologic Malignancy Reports, 2019, 14, 261-268.	2.3	72
14	Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells. Clinical Cancer Research, 2019, 25, 4014-4025.	7.0	110
15	CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica, 2019, 104, e100-e103.	3.5	90
16	The Impact and Modulation of Microenvironment-Induced Immune Resistance Against CAR T Cell and Antibody Treatments in Multiple Myeloma. Blood, 2019, 134, 137-137.	1.4	10
17	CD38-targeting antibodies in multiple myeloma: mechanisms of action and clinical experience. Expert Review of Clinical Immunology, 2018, 14, 197-206.	3.0	30
18	Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design. PLoS ONE, 2018, 13, e0197349.	2.5	60

Maria Themeli

#	Article	IF	CITATIONS
19	A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Molecular Therapy, 2017, 25, 1946-1958.	8.2	197
20	Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101, 616-625.	3.5	136
21	Combinatorial Antigen Targeting: Ideal T-Cell Sensing and Anti-Tumor Response. Trends in Molecular Medicine, 2016, 22, 271-273.	6.7	11
22	Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene. Molecular Therapy - Nucleic Acids, 2016, 5, e284.	5.1	21
23	Reducing on-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors By Affinity Optimization. Blood, 2016, 128, 2170-2170.	1.4	9
24	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	11.1	134
25	The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.	4.8	7
26	Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nature Biotechnology, 2013, 31, 928-933.	17.5	362
27	PD-1– and CTLA-4–Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses. Science Translational Medicine, 2013, 5, 215ra172.	12.4	565
28	DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation. International Journal of Molecular Sciences, 2012, 13, 15813-15825.	4.1	5
29	Identification of a novel HLA-G+ regulatory population in blood: expansion after allogeneic transplantation and de novo HLA-G expression at graft-versus-host disease sites. Haematologica, 2012, 97, 1338-1347.	3.5	13
30	Horizontal DNA Transfer from Donor to Host Cells as an Alternative Mechanism of Epithelial Chimerism after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, 319-329.	2.0	22
31	DNA chimerism and its consequences after allogeneic hematopoietic cell transplantation. Chimerism, 2011, 2, 25-28.	0.7	9
32	Pharmacokinetics and clinical activity of very low-dose alemtuzumab in transplantation for acute leukemia. Bone Marrow Transplantation, 2011, 46, 1363-1368.	2.4	18
33	Comparative Blood Group Profiling of Human Erythroid Cells (EBs) Generated from Adult Blood (AB), Cord Blood (CB), Human Embryonic Stem Cells (hESC) and Induced Pluripotent Stem Cells (iPS). Blood, 2011, 118, 1027-1027.	1.4	3
34	Targeting a Novel Epigenetic Silencing Mechanism to Efficiently Upregulate Fetal Globin Gene Expression. Blood, 2011, 118, 352-352.	1.4	0
35	DNA chimerism and its consequences after allogeneic hematopoietic cell transplantation. Chimerism, 2011, 2, 25-8.	0.7	3
36	Alloreactive microenvironment after human hematopoietic cell transplantation induces genomic alterations in epithelium through an ROS-mediated mechanism: in vivo and in vitro study and implications to secondary neoplasia. Leukemia, 2010, 24, 536-543.	7.2	36

#	Article	IF	CITATIONS
37	Pharmacokinetics and Clinical Activity of Very Low Dose (10mg) Alemtuzumab In Transplantation for Acute Leukemia Blood, 2010, 116, 1275-1275.	1.4	Ο
38	Horizontal DNA and mRNA transfer between donor and recipient cells after allogeneic hematopoietic cell transplantation?. Frontiers in Bioscience - Landmark, 2009, Volume, 2704.	3.0	5