List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988351/publications.pdf Version: 2024-02-01

Ρλιιι Κλαροι

#	Article	IF	CITATIONS
1	Root trait variation along a subâ€arctic tundra elevational gradient. Oikos, 2023, 2023, .	2.7	12
2	Root traits and soil microâ€organisms as drivers of plant–soil feedbacks within the subâ€arctic tundra meadow. Journal of Ecology, 2022, 110, 466-478.	4.0	8
3	Longâ€ŧerm heavy grazing increases communityâ€ŀevel foliar fungal diseases by shifting plant composition. Journal of Applied Ecology, 2022, 59, 791-800.	4.0	6
4	Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology and Biochemistry, 2022, 165, 108533.	8.8	68
5	Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability. Science of the Total Environment, 2022, 812, 152560.	8.0	8
6	Contribution of soil algae to the global carbon cycle. New Phytologist, 2022, 234, 64-76.	7.3	39
7	Nitrogen deposition stimulates decomposition via changes in the structure and function of litter food webs. Soil Biology and Biochemistry, 2022, 166, 108522.	8.8	21
8	Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecology and Evolution, 2022, 12, e8590.	1.9	11
9	Bryosphere Loss Impairs Litter Decomposition Consistently Across Moss Species, Litter Types, and Micro-Arthropod Abundance. Ecosystems, 2022, 25, 1542-1554.	3.4	2
10	Direct and indirect effects of fire on microbial communities in a pyrodiverse dryâ€sclerophyll forest. Journal of Ecology, 2022, 110, 1687-1703.	4.0	9
11	Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry, 2022, 170, 108695.	8.8	12
12	No evidence that conifer biochar impacts soil functioning by serving as microbial refugia in boreal soils. GCB Bioenergy, 2022, 14, 972-988.	5.6	5
13	Trait coordination in boreal mosses reveals a bryophyte economics spectrum. Journal of Ecology, 2022, 110, 2493-2506.	4.0	4
14	A framework to assess the carbon supply–consumption balance in plant roots. New Phytologist, 2021, 229, 659-664.	7.3	35
15	Root trait–microbial relationships across tundra plant species. New Phytologist, 2021, 229, 1508-1520.	7.3	46
16	Precipitation regime controls bryosphere carbon cycling similarly across contrasting ecosystems. Oikos, 2021, 130, 512-524.	2.7	5
17	Effects of nitrogen addition and mowing on nitrogen- and water-use efficiency of <i>Artemisia frigida</i> in a grassland restored from an abandoned cropland. Journal of Plant Ecology, 2021, 14, 515-526.	2.3	11
18	Globally, plantâ€soil feedbacks are weak predictors of plant abundance. Ecology and Evolution, 2021, 11, 1756-1768.	1.9	19

#	Article	IF	CITATIONS
19	Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe. Science of the Total Environment, 2021, 757, 143768.	8.0	5
20	Multiâ€dimensionality as a path forward in plantâ€soil feedback research. Journal of Ecology, 2021, 109, 3446-3465.	4.0	34
21	Above―and belowâ€ground complementarity rather than selection drive tree diversity–productivity relationships in European forests. Functional Ecology, 2021, 35, 1756-1767.	3.6	15
22	Soil biotic and abiotic effects on seedling growth exhibit contextâ€dependent interactions: evidence from a multi ountry experiment on <i>Pinus contorta</i> invasion. New Phytologist, 2021, 232, 303-317.	7.3	17
23	Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. Journal of Ecology, 2021, 109, 3424-3441.	4.0	10
24	Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships. Trends in Ecology and Evolution, 2021, 36, 651-661.	8.7	74
25	Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 2021, 27, 5976-5988.	9.5	55
26	Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: a meta-analysis. Ecological Processes, 2021, 10, .	3.9	6
27	The diversity of soil mesofauna declines after bamboo invasion in subtropical China. Science of the Total Environment, 2021, 789, 147982.	8.0	14
28	Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Applied Soil Ecology, 2021, 168, 104107.	4.3	17
29	Plant–soil biota interactions explain shifts in plant community composition under global change. Functional Ecology, 2021, 35, 2778-2788.	3.6	8
30	Net neutral carbon responses to warming and grazing in alpine grassland ecosystems. Agricultural and Forest Meteorology, 2020, 280, 107792.	4.8	19
31	Impact of plant functional group and species removals on soil and plant nitrogen and phosphorus across a retrogressive chronosequence. Journal of Ecology, 2020, 108, 561-573.	4.0	8
32	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
33	Microtopography-induced ecohydrological effects alter plant community structure. Geoderma, 2020, 362, 114119.	5.1	23
34	Annual ecosystem respiration is resistant to changes in freeze–thaw periods in semiâ€arid permafrost. Global Change Biology, 2020, 26, 2630-2641.	9.5	18
35	What do scientists and managers know about soil biodiversity? Comparative knowledge mapping for sustainable forest management. Forest Policy and Economics, 2020, 119, 102264.	3.4	9
36	Effects of plant functional group removal on CO 2 fluxes and belowground C stocks across contrasting ecosystems. Ecology, 2020, 101, e03170.	3.2	13

#	Article	IF	CITATIONS
37	Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity. Biology and Fertility of Soils, 2020, 56, 1007-1022.	4.3	11
38	Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytologist, 2020, 228, 1269-1282.	7.3	144
39	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	5.3	46
40	Short-term effects of snow cover manipulation on soil bacterial diversity and community composition. Science of the Total Environment, 2020, 741, 140454.	8.0	13
41	Tradeâ€off between vegetation type, soil erosion control and surface water in global semiâ€arid regions: A metaâ€analysis. Journal of Applied Ecology, 2020, 57, 875-885.	4.0	84
42	Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biology and Biochemistry, 2020, 147, 107847.	8.8	38
43	Comparison of plant–soil feedback experimental approaches for testing soil biotic interactions among ecosystems. New Phytologist, 2019, 221, 577-587.	7.3	46
44	Biotic and abiotic plant–soil feedback depends on nitrogenâ€acquisition strategy and shifts during longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 142-153.	4.0	41
45	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	7.8	304
46	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	27.8	635
47	The Role of Plant Litter in Driving Plant-Soil Feedbacks. Frontiers in Environmental Science, 2019, 7, .	3.3	79
48	Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 2019, 10, 2203.	12.8	158
49	Immediate and carry-over effects of increased soil frost on soil respiration and microbial activity in a spruce forest. Soil Biology and Biochemistry, 2019, 135, 51-59.	8.8	21
50	Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. Ecology Letters, 2019, 22, 1095-1103.	6.4	61
51	Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence. Geoderma, 2019, 347, 126-134.	5.1	43
52	Toward more robust plant–soil feedback research: Comment. Ecology, 2019, 100, e02590.	3.2	19
53	Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. Advances in Agronomy, 2019, , 1-44.	5.2	99
54	Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology and Biochemistry, 2019, 138, 107598.	8.8	22

PAUL KARDOL

#	Article	IF	CITATIONS
55	The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biology and Biochemistry, 2019, 128, 111-114.	8.8	244
56	Why are plant–soil feedbacks so unpredictable, and what to do about it?. Functional Ecology, 2019, 33, 118-128.	3.6	91
57	Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia, 2018, 67, 57-64.	1.2	14
58	The role of plant–soil feedbacks in stabilizing a reindeerâ€induced vegetation shift in subarctic tundra. Functional Ecology, 2018, 32, 1959-1971.	3.6	15
59	Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology and Evolution, 2018, 2, 269-278.	7.8	136
60	Bacterial community dynamics in the rhizosphere of a long-lived, leguminous shrub across a 40-year age sequence. Journal of Soils and Sediments, 2018, 18, 76-84.	3.0	35
61	Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends in Ecology and Evolution, 2018, 33, 129-142.	8.7	249
62	How anthropogenic shifts in plant community composition alter soil food webs. F1000Research, 2018, 7, 4.	1.6	26
63	Soil Biota as Drivers of Plant Community Assembly. Ecological Studies, 2018, , 293-318.	1.2	4
64	Plant organic N uptake maintains species dominance under long-term warming. Plant and Soil, 2018, 433, 243-255.	3.7	13
65	Effects of interspecific competition on plant-soil feedbacks generated by long-term grazing. Soil Biology and Biochemistry, 2018, 126, 133-143.	8.8	17
66	Long-term effects of species loss on community properties across contrasting ecosystems. Nature, 2018, 557, 710-713.	27.8	75
67	Nutrient optimization of tree growth alters structure and function of boreal soil food webs. Forest Ecology and Management, 2018, 428, 46-56.	3.2	11
68	Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments, 2017, 17, 122-132.	3.0	13
69	Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 2017, 355, 173-176.	12.6	299
70	Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 2017, 126, 1586-1599.	2.7	32
71	Plantâ€soil feedbacks in declining forests: implications for species coexistence. Ecology, 2017, 98, 1908-1921.	3.2	34
72	Effects of grazing on the acquisition of nitrogen by plants and microorganisms in an alpine grassland on the Tibetan plateau. Plant and Soil, 2017, 416, 297-308.	3.7	18

#	Article	IF	CITATIONS
73	Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biology and Biochemistry, 2017, 106, 69-79.	8.8	77
74	Soil fertility shapes belowground food webs across a regional climate gradient. Ecology Letters, 2017, 20, 1273-1284.	6.4	78
75	Soil handling methods should be selected based on research questions and goals. New Phytologist, 2017, 216, 18-23.	7.3	31
76	A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.	7.8	172
77	The nutrient absorption–transportation hypothesis: optimizing structural traits in absorptive roots. New Phytologist, 2017, 213, 1569-1572.	7.3	107
78	Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau. Sustainability, 2017, 9, 948.	3.2	16
79	Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 2016, 13, 415-424.	3.3	47
80	Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem. Remote Sensing, 2016, 8, 391.	4.0	51
81	Trophic cascades in the bryosphere: the impact of global change factors on topâ€down control of cyanobacterial N ₂ â€fixation. Ecology Letters, 2016, 19, 967-976.	6.4	28
82	The importance of priority effects for riparian plant community dynamics. Journal of Vegetation Science, 2016, 27, 658-667.	2.2	59
83	Global patterns and substrateâ€based mechanisms of theÂterrestrial nitrogen cycle. Ecology Letters, 2016, 19, 697-709.	6.4	192
84	A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biology and Biochemistry, 2016, 102, 33-36.	8.8	36
85	Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post-fire successional gradient. Soil Biology and Biochemistry, 2016, 98, 159-170.	8.8	65
86	Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. Journal of Ecology, 2016, 104, 1219-1232.	4.0	40
87	Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. Journal of Ecology, 2016, 104, 1505-1517.	4.0	37
88	Nematode community resistant to deep soil frost in boreal forest soils. Pedobiologia, 2016, 59, 243-251.	1.2	12
89	The impact of charcoal and soil mixtures on decomposition and soil microbial communities in boreal forest. Applied Soil Ecology, 2016, 99, 40-50.	4.3	22
90	Effects of warming and grazing on dissolved organic nitrogen in a Tibetan alpine meadow ecosystem. Soil and Tillage Research, 2016, 158, 156-164.	5.6	22

#	Article	IF	CITATIONS
91	Contrasting Responses of Soil Microbial and Nematode Communities to Warming and Plant Functional Group Removal Across a Post-fire Boreal Forest Successional Gradient. Ecosystems, 2016, 19, 339-355.	3.4	52
92	Grazing modifies inorganic and organic nitrogen uptake by coexisting plant species in alpine grassland. Biology and Fertility of Soils, 2016, 52, 211-221.	4.3	30
93	Lichen Physiological Traits and Growth Forms Affect Communities of Associated Invertebrates. Bulletin of the Ecological Society of America, 2015, 96, 627-628.	0.2	14
94	A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil, 2015, 1, 257-271.	4.9	83
95	Influence of species identity and charring conditions on fire-derived charcoal traits. Canadian Journal of Forest Research, 2015, 45, 1669-1675.	1.7	7
96	Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra. Oikos, 2015, 124, 772-783.	2.7	28
97	Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems, 2015, 18, 154-169.	3.4	43
98	Lichen physiological traits and growth forms affect communities of associated invertebrates. Ecology, 2015, 96, 2394-2407.	3.2	25
99	Removal of secondary compounds increases invertebrate abundance in lichens. Fungal Ecology, 2015, 18, 18-25.	1.6	26
100	Peeking into the black box: a traitâ€based approach to predicting plant–soil feedback. New Phytologist, 2015, 206, 1-4.	7.3	44
101	Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition. Environmental Science and Pollution Research, 2015, 22, 19507-19517.	5.3	14
102	Coordination of aboveground and belowground responses to localâ€scale soil fertility differences between two contrasting Jamaican rain forest types. Oikos, 2015, 124, 285-297.	2.7	15
103	Soilâ€mediated effects of invasive ungulates on native tree seedlings. Journal of Ecology, 2014, 102, 622-631.	4.0	76
104	Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Management, 2014, 34, 1546-1552.	7.4	105
105	Modeling Carbon Fluxes Using Multi-Temporal MODIS Imagery and CO2 Eddy Flux Tower Data in Zoige Alpine Wetland, South-West China. Wetlands, 2014, 34, 603-618.	1.5	30
106	Stimulation of boreal tree seedling growth by woodâ€derived charcoal: effects of charcoal properties, seedling species and soil fertility. Functional Ecology, 2014, 28, 766-775.	3.6	55
107	Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytologist, 2014, 202, 415-421.	7.3	96
108	The influence of treeâ€scale and ecosystemâ€scale factors on epiphytic lichen communities across a longâ€ŧerm retrogressive chronosequence. Journal of Vegetation Science, 2014, 25, 1100-1111.	2.2	10

#	Article	IF	CITATIONS
109	Local plant adaptation across a subarctic elevational gradient. Royal Society Open Science, 2014, 1, 140141.	2.4	12
110	Interactive Effects of Nitrogen and Water Addition on Competitive Hierarchies Between Early- and Late- Successional Plant Species. Polish Journal of Ecology, 2014, 62, 665-678.	0.2	1
111	Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. Oikos, 2013, 122, 84-94.	2.7	179
112	Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling. Journal of Soils and Sediments, 2013, 13, 1012-1023.	3.0	19
113	Subordinate plant species enhance community resistance against drought in semiâ€natural grasslands. Journal of Ecology, 2013, 101, 763-773.	4.0	131
114	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	4.0	1,259
115	Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Global Change Biology, 2013, 19, 3688-3697.	9.5	221
116	Biotic plant–soil feedbacks across temporal scales. Journal of Ecology, 2013, 101, 309-315.	4.0	184
117	Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences, 2013, 10, 8129-8138.	3.3	16
118	Crossing the threshold: the power of multiâ€level experiments in identifying global change responses. New Phytologist, 2012, 196, 323-326.	7.3	28
119	Effects of Reed Straw, Zeolite, and Superphosphate Amendments on Ammonia and Greenhouse Gas Emissions from Stored Duck Manure. Journal of Environmental Quality, 2012, 41, 1221-1227.	2.0	16
120	Effects of flue gas desulfurization gypsum by-products on microbial biomass and community structure in alkaline–saline soils. Journal of Soils and Sediments, 2012, 12, 1040-1053.	3.0	25
121	Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression. PLoS ONE, 2012, 7, e43384.	2.5	77
122	Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47, 37-44.	4.3	175
123	Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land. Soil Biology and Biochemistry, 2011, 43, 251-260.	8.8	94
124	Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China. Plant and Soil, 2011, 346, 331-347.	3.7	32
125	Multiple Climate Change Factors Interact to Alter Soil Microbial Community Structure in an Oldâ€Field Ecosystem. Soil Science Society of America Journal, 2011, 75, 2217-2226.	2.2	88
126	The role of plant–soil feedbacks and landâ€use legacies in restoration of a temperate steppe in northern China. Ecological Research, 2010, 25, 1101-1111.	1.5	24

#	Article	IF	CITATIONS
127	Long-term successional forest dynamics: species and community responses to climatic variability. Journal of Vegetation Science, 2010, 21, 627.	2.2	29
128	Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental oldâ€field ecosystem. Global Change Biology, 2010, 16, 2676-2687.	9.5	210
129	CO2 enrichment accelerates successional development of an understory plant community. Journal of Plant Ecology, 2010, 3, 33-39.	2.3	28
130	How understanding aboveground–belowground linkages can assist restoration ecology. Trends in Ecology and Evolution, 2010, 25, 670-679.	8.7	365
131	Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 2010, 91, 767-781.	3.2	311
132	Soil Organism and Plant Introductions in Restoration of Speciesâ€Rich Grassland Communities. Restoration Ecology, 2009, 17, 258-269.	2.9	52
133	Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica, 2009, 35, 603-609.	1.1	44
134	Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology, 2008, 39, 23-34.	4.3	126
135	Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction. Biological Conservation, 2008, 141, 2208-2217.	4.1	61
136	Getting Plant—Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches. Progress in Botany Fortschritte Der Botanik, 2008, , 449-472.	0.3	115
137	MICROBE-MEDIATED PLANT–SOIL FEEDBACK CAUSES HISTORICAL CONTINGENCY EFFECTS IN PLANT COMMUNITY ASSEMBLY. Ecological Monographs, 2007, 77, 147-162.	5.4	427
138	Temporal variation in plant-soil feedback controls succession. Ecology Letters, 2006, 9, 1080-1088.	6.4	550
139	Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry, 2006, 38, 51-60.	8.8	216
140	Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biological Conservation, 2005, 126, 317-327.	4.1	86