Jonathan C Claussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/988244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	9.1	300
2	Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon‣oaded Microbullets for Targeted Tissue Penetration and Deformation. Angewandte Chemie - International Edition, 2012, 51, 7519-7522.	13.8	277
3	Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks. ACS Nano, 2009, 3, 37-44.	14.6	242
4	Increasing the activity of immobilized enzymes with nanoparticle conjugation. Current Opinion in Biotechnology, 2015, 34, 242-250.	6.6	228
5	Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for Electrochemical Biosensing. Advanced Functional Materials, 2012, 22, 3399-3405.	14.9	199
6	Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of <i>Salmonella enterica</i> in Chicken Broth. ACS Sensors, 2020, 5, 1900-1911.	7.8	148
7	Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS Applied Materials & Interfaces, 2018, 10, 39124-39133.	8.0	117
8	Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates. ACS Applied Materials & Interfaces, 2018, 10, 11125-11134.	8.0	112
9	3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale, 2016, 8, 15870-15879.	5.6	108
10	Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale, 2019, 11, 5222-5230.	5.6	100
11	Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits. ACS Applied Materials & Interfaces, 2014, 6, 3771-3778.	8.0	98
12	A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosensors and Bioelectronics, 2016, 85, 479-487.	10.1	91
13	Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS Applied Materials & Interfaces, 2020, 12, 8592-8603.	8.0	87
14	Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays. Nanoscale, 2013, 5, 12156.	5.6	86
15	Nanomaterial-mediated Biosensors for Monitoring Glucose. Journal of Diabetes Science and Technology, 2014, 8, 403-411.	2.2	85
16	A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosensors and Bioelectronics, 2011, 26, 2237-2245.	10.1	79
17	A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology, 2011, 22, 355502.	2.6	75
18	Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array. ACS Sensors, 2017, 2, 210-217.	7.8	71

JONATHAN C CLAUSSEN

#	Article	IF	CITATIONS
19	A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. Journal of Neuroscience Methods, 2010, 189, 14-22.	2.5	62
20	Probing the Enzymatic Activity of Alkaline Phosphatase within Quantum Dot Bioconjugates. Journal of Physical Chemistry C, 2015, 119, 2208-2221.	3.1	62
21	Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. 2D Materials, 2020, 7, 034002.	4.4	61
22	Electrical Differentiation of Mesenchymal Stem Cells into Schwannâ€Cellâ€Like Phenotypes Using Inkjetâ€Printed Graphene Circuits. Advanced Healthcare Materials, 2017, 6, 1601087.	7.6	60
23	Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing. ACS Applied Materials & Interfaces, 2017, 9, 12719-12727.	8.0	59
24	Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. Journal of Materials Chemistry, 2011, 21, 11224.	6.7	58
25	Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites. Analyst, The, 2011, 136, 4916.	3.5	56
26	High-Resolution Graphene Films for Electrochemical Sensing <i>via</i> Inkjet Maskless Lithography. ACS Nano, 2017, 11, 9836-9845.	14.6	56
27	Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes. Journal of Diabetes Science and Technology, 2010, 4, 312-319.	2.2	52
28	High Aspect Ratio Carbon Nanotube Membranes Decorated with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion <i>via</i> H ₂ O ₂ Decomposition. ACS Nano, 2015, 9, 7791-7803.	14.6	51
29	Transforming the Fabrication and Biofunctionalization of Gold Nanoelectrode Arrays into Versatile Electrochemical Glucose Biosensors. ACS Applied Materials & Interfaces, 2011, 3, 1765-1770.	8.0	48
30	Inkjet Printing of Singleâ€Crystalline Bi ₂ Te ₃ Thermoelectric Nanowire Networks. Advanced Electronic Materials, 2017, 3, 1600524.	5.1	48
31	Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene <i>via</i> salt impregnated inkjet maskless lithography. Nanoscale Horizons, 2019, 4, 735-746.	8.0	43
32	Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. Journal of Physical Chemistry C, 2011, 115, 20896-20904.	3.1	42
33	Multiplexed and switchable release of distinct fluids from microneedle platforms via conducting polymer nanoactuators for potential drug delivery. Sensors and Actuators B: Chemical, 2012, 161, 1018-1024.	7.8	42
34	Platinum-Paper Micromotors: An Urchin-like Nanohybrid Catalyst for Green Monopropellant Bubble-Thrusters. ACS Applied Materials & Interfaces, 2014, 6, 17837-17847.	8.0	40
35	Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano, 2022, 16, 15-28.	14.6	40
36	CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosensors and Bioelectronics, 2018, 117, 68-74.	10.1	37

JONATHAN C CLAUSSEN

#	Article	IF	CITATIONS
37	Electrochemical Glucose Sensors Enhanced by Methyl Viologen and Vertically Aligned Carbon Nanotube Channels. ACS Applied Materials & Interfaces, 2018, 10, 28351-28360.	8.0	37
38	A triangular three-dye DNA switch capable of reconfigurable molecular logic. RSC Advances, 2014, 4, 48860-48871.	3.6	35
39	Ionâ€Selective Sensors Based on Laserâ€Induced Graphene for Evaluating Human Hydration Levels Using Urine Samples. Advanced Materials Technologies, 2020, 5, 1901037.	5.8	34
40	Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene. ACS Sensors, 2021, 6, 3063-3071.	7.8	34
41	Enhanced enzymatic activity from phosphotriesterase trimer gold nanoparticle bioconjugates for pesticide detection. Analyst, The, 2017, 142, 3261-3271.	3.5	33
42	Electrochemical cotinine sensing with a molecularly imprinted polymer on a graphene-platinum nanoparticle modified carbon electrode towards cigarette smoke exposure monitoring. Sensors and Actuators B: Chemical, 2019, 287, 165-172.	7.8	32
43	Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Advanced Healthcare Materials, 2018, 7, e1701046.	7.6	30
44	Oscillatory glucose flux in INS 1 pancreatic β cells: A self-referencing microbiosensor study. Analytical Biochemistry, 2011, 411, 185-193.	2.4	29
45	Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes. Sensors, 2015, 15, 14766-14787.	3.8	29
46	Superhydrophobic inkjet printed flexible graphene circuits <i>via</i> direct-pulsed laser writing. Nanoscale, 2017, 9, 19058-19065.	5.6	29
47	Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. Journal of Materials Chemistry C, 2020, 8, 11376-11388.	5.5	29
48	Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting. Scientific Reports, 2019, 9, 10595.	3.3	26
49	Label-free electrochemical immunosensor for the rapid and sensitive detection of the oxidative stress marker superoxide dismutase 1 at the point-of-care. Sensors and Actuators B: Chemical, 2016, 236, 546-553.	7.8	25
50	Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva. 2D Materials, 2022, 9, 035016.	4.4	24
51	Independently addressable fields of porous anodic alumina embedded in SiO[sub 2] on Si. Applied Physics Letters, 2008, 92, 013122.	3.3	19
52	Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose. Mikrochimica Acta, 2019, 186, 533.	5.0	19
53	Platinum Nanoparticle Decorated SiO ₂ Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion. ACS Applied Materials & Interfaces, 2016, 8, 30941-30947. 	8.0	18
54	Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures. Sensors and Actuators B: Chemical, 2017, 246, 20-28.	7.8	18

JONATHAN C CLAUSSEN

#	Article	IF	CITATIONS
55	SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. Sensors, 2019, 19, 4935.	3.8	17
56	pulSED: pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. Analyst, The, 2016, 141, 3367-3378.	3.5	16
57	Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Analytical and Bioanalytical Chemistry, 2021, 413, 6201-6212.	3.7	16
58	3D Interdigitated Vertically Aligned Carbon Nanotube Electrodes for Electrochemical Impedimetric Biosensing. ACS Applied Nano Materials, 2020, 3, 10166-10175.	5.0	14
59	All-graphene-based open fluidics for pumpless, small-scale fluid transport <i>via</i> laser-controlled wettability patterning. Nanoscale Horizons, 2021, 6, 24-32.	8.0	12
60	Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta, 2013, 238, 599-614.	3.2	8
61	Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochimica Acta, 2022, 189, 122.	5.0	8
62	Determination of Electrical Stimuli Parameters To Transdifferentiate Genetically Engineered Mesenchymal Stem Cells into Neuronal or Glial Lineages. Regenerative Engineering and Translational Medicine, 2020, 6, 18-28.	2.9	7
63	Cryoconcentration of flavonoid extract for enhanced biophotovoltaics and pH sensitive thin films. Biotechnology Progress, 2018, 34, 206-217.	2.6	6
64	Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation. , 2015, , 137-166.		5
65	Porous Wood Monoliths Decorated with Platinum Nano-Urchins as Catalysts for Underwater Micro-Vehicle Propulsion via H ₂ O ₂ Decomposition. ACS Applied Nano Materials, 2019, 2, 4143-4149.	5.0	5
66	Synthesis and applications of cellulose nanohybrid materials. , 2017, , 289-320.		4
67	Fabrication of Two-Dimensional and Three-Dimensional High-Resolution Binder-Free Graphene Circuits Using a Microfluidic Approach for Sensor Applications. ACS Applied Materials & Interfaces, 2020, 12, 13529-13539.	8.0	4
68	Using Nanotechnology to Improve Lab on a Chip Devices. Journal of Biochips & Tissue Chips, 2012, 02, .	0.2	4
69	Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer. , 2013, , .		2
70	Modified kinetics of enzymes interacting with nanoparticles. , 2015, , .		1
71	Effect of platinum nanoparticle deposition parameters on hydrogen peroxide transduction for applications in wearable electrochemical glucose biosensors. Proceedings of SPIE, 2016, , .	0.8	1

72 Microbial Pathogen Detection Strategies. , 2010, , 1-4.

#	Article	IF	CITATIONS
73	Biosensor Capture Kinetics Model of Nanocube-Augmented Carbon Nanotube Networks. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	Ο
74	Monitoring enzyme kinetic behavior of enzyme-quantum dot bioconjugates. Proceedings of SPIE, 2014, ,	0.8	0
75	Electrochemical Immunobiosensors for Point-of-Care Detection of Hypoxia Biomarkers. , 2018, , 257-276.		0