Zhenhuang Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9877802/publications.pdf Version: 2024-02-01

ZHENHUANC SU

#	Article	IF	CITATIONS
1	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	14.9	14
2	MoO3 doped PTAA for high-performance inverted perovskite solar cells. Applied Surface Science, 2022, 571, 151301.	6.1	19
3	Enhancement of exciton separation in indoor perovskite photovoltaics by employing conjugated organic chromophores. Journal of Power Sources, 2022, 520, 230785.	7.8	10
4	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	21.0	71
5	Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 814-825.	8.0	7
6	Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment. Advanced Materials Interfaces, 2021, 8, .	3.7	19
7	Efficient and moisture-resistant organic solar cells <i>via</i> simultaneously reducing the surface defects and hydrophilicity of an electron transport layer. Journal of Materials Chemistry C, 2021, 9, 13500-13508.	5.5	15
8	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371, 1359-1364.	12.6	508
9	Impacts of MAPbBr3 Additive on Crystallization Kinetics of FAPbI3 Perovskite for High Performance Solar Cells. Coatings, 2021, 11, 545.	2.6	5
10	A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface. Crystals, 2021, 11, 547.	2.2	2
11	Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2021, 15, 2100023.	8.7	36
12	Ternary Twoâ€Step Sequential Deposition Induced Perovskite Orientational Crystallization for Highâ€Performance Photovoltaic Devices. Advanced Energy Materials, 2021, 11, 2101538.	19.5	35
13	Unveiling Crystal Orientation in Quasiâ€⊋D Perovskite Films by In Situ GIWAXS for Highâ€Performance Photovoltaics. Small, 2021, 17, e2100972.	10.0	23
14	Ionic Liquid Stabilizing Highâ€Efficiency Tin Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101539.	19.5	117
15	Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690.	5.1	2
16	Improved V ₂ O _X Passivating Contact for <i>p</i> ‶ype Crystalline Silicon Solar Cells by Oxygen Vacancy Modulation with a SiO _X Tunnel Layer. Advanced Materials Interfaces, 2021, 8, 2100989.	3.7	16
17	Red arbonâ€Quantumâ€Đotâ€Đoped SnO ₂ Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906374.	21.0	230
18	Stabilization of Intrinsic Ions in Perovskite Solar Cells by Employment of a Bipolar Star-Shaped Organic Molecule as a Charge Transport Buffer. ACS Applied Energy Materials, 2020, 3, 10632-10641.	5.1	2

ZHENHUANG SU

#	Article	IF	CITATIONS
19	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 42369-42377.	8.0	9
20	Defects controlled doping and electrical transport in TiS2 single crystals. Applied Physics Letters, 2020, 116, .	3.3	5
21	Graphene oxide as an additive to improve perovskite film crystallization and morphology forAhigh-efficiency solar cells. RSC Advances, 2018, 8, 987-993.	3.6	39
22	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3PbI3 interface. Applied Physics Letters, 2018, 113, .	3.3	11