
Julien Hanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/987610/publications.pdf Version: 2024-02-01

LULIEN HANSON

#	Article	IF	CITATIONS
1	Dopamine D2L receptor density influences the recruitment of \hat{I}^2 -arrestin2 and Gi1 induced by antiparkinsonian drugs. Neuropharmacology, 2022, 207, 108942.	4.1	2
2	Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators—What is the Evidence so far?. Frontiers in Pharmacology, 2022, 13, 838782.	3.5	70
3	Super-conserved receptors expressed in the brain: biology and medicinal chemistry efforts. Future Medicinal Chemistry, 2022, 14, 899-913.	2.3	3
4	Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. , 2022, 240, 108217.		4
5	The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B. Frontiers in Immunology, 2022, 13, .	4.8	6
6	Receptor density influences the recruitment bias of aripiprazole and brexpiprazole at the dopamine D _{2L} receptor. Fundamental and Clinical Pharmacology, 2022, 36, 976-984.	1.9	1
7	Nanoluciferase-Based Complementation Assay to Detect GPCR-G Protein Interaction. Methods in Molecular Biology, 2021, 2268, 149-157.	0.9	5
8	βâ€∎rrestin2 recruitment at the β2 adrenergic receptor: A luciferase complementation assay adapted for undergraduate training in pharmacology. Pharmacology Research and Perspectives, 2021, 9, e00706.	2.4	0
9	NanoLuc (NLuc) complementation assay elucidates role of specific Gâ€proteins in GPR88 signaling. FASEB Journal, 2021, 35, .	0.5	0
10	Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Science Advances, 2021, 7, .	10.3	8
11	GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of G s and G q/11. FASEB Journal, 2021, 35, .	0.5	1
12	Succinate receptor in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
13	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€eoupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
14	Structure-activity relationships of agonists for the orphan G protein-coupled receptor GPR27. European Journal of Medicinal Chemistry, 2021, 225, 113777.	5.5	9
15	GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of Gs and Gq/11. Nature Communications, 2020, 11, 4752.	12.8	31
16	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
17	The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells, 2019, 8, 613.	4.1	60
18	A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR–G protein interactions. Journal of Biological Chemistry, 2019, 294, 4079-4090.	3.4	48

Julien Hanson

#	Article	IF	CITATIONS
19	Succinate receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
20	The G protein-coupled receptors deorphanization landscape. Biochemical Pharmacology, 2018, 153, 62-74.	4.4	81
21	Different contributions of chemokine Nâ€ŧerminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. British Journal of Pharmacology, 2018, 175, 1419-1438.	5.4	52
22	7-Phenoxy-Substituted 3,4-Dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. Journal of Medicinal Chemistry, 2018, 61, 251-264.	6.4	41
23	Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology, 2018, 153, 299-309.	4.4	33
24	The causes and consequences of pituitary gigantism. Nature Reviews Endocrinology, 2018, 14, 705-720.	9.6	57
25	Enhancing Action of Positive Allosteric Modulators through the Design of Dimeric Compounds. Journal of Medicinal Chemistry, 2018, 61, 5279-5291.	6.4	41
26	Capillary electrophoretic mobility shift displacement assay for the assessment of weak drug-protein interactions. Analytica Chimica Acta, 2018, 1034, 214-222.	5.4	10
27	Therapeutic Applications of Prostaglandins and Thromboxane A2 Inhibitors in Abdominal Aortic Aneurysms. Current Drug Targets, 2018, 19, 1247-1255.	2.1	8
28	GPR101 orphan receptor: a novel cause of growth hormone deregulation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-8-8.	0.0	0
29	GPR101 orphan receptor: a novel cause of growth hormone deregulation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, YIA-9.	0.0	0
30	Identification and pharmacological characterization of succinate receptor agonists. British Journal of Pharmacology, 2017, 174, 796-808.	5.4	46
31	Activation of the Orphan G Protein–Coupled Receptor GPR27 by Surrogate Ligands Promotes <i>β</i> -Arrestin 2 Recruitment. Molecular Pharmacology, 2017, 91, 595-608.	2.3	27
32	Chemokine neutralization as an innovative therapeutic strategy for atopic dermatitis. Drug Discovery Today, 2017, 22, 702-711.	6.4	18
33	Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin. Analytica Chimica Acta, 2017, 984, 211-222.	5.4	17
34	Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7. Biochemical Pharmacology, 2016, 114, 14-21.	4.4	37
35	GPCRs in immunity: Atypical receptors and novel concepts. Biochemical Pharmacology, 2016, 114, 1-2.	4.4	2

Insight into SUCNR1 (GPR91) structure and function. , 2016, 159, 56-65.

110

Julien Hanson

#	Article	IF	CITATIONS
37	Forskolin-free cAMP assay for Gi-coupled receptors. Biochemical Pharmacology, 2015, 98, 381-391.	4.4	37
38	Heterologously expressed formyl peptide receptor 2 (FPR2/ALX) does not respond to lipoxin A4. Biochemical Pharmacology, 2013, 85, 1795-1802.	4.4	37
39	Synthesis and pharmacological evaluation of 2-aryloxy/arylamino-5-cyanobenzenesulfonylureas as novel thromboxane A2 receptor antagonists. European Journal of Medicinal Chemistry, 2013, 65, 32-40.	5.5	7
40	Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin. , 2012, 136, 1-7.		35
41	Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends in Pharmacological Sciences, 2011, 32, 700-707.	8.7	83
42	BM-573 inhibits the development of early atherosclerotic lesions in Apo E deficient mice by blocking TP receptors and thromboxane synthase. Prostaglandins and Other Lipid Mediators, 2011, 94, 124-132.	1.9	17
43	An Autocrine Lactate Loop Mediates Insulin-Dependent Inhibition of Lipolysis through GPR81. Cell Metabolism, 2010, 11, 311-319.	16.2	291
44	Nicotinic acid– and monomethyl fumarate–induced flushing involves GPR109A expressed by keratinocytes and COX-2–dependent prostanoid formation in mice. Journal of Clinical Investigation, 2010, 120, 2910-2919.	8.2	173
45	Deorphanization of GPR109B as a Receptor for the β-Oxidation Intermediate 3-OH-octanoic Acid and Its Role in the Regulation of Lipolysis. Journal of Biological Chemistry, 2009, 284, 21928-21933.	3.4	78
46	BM-573, a thromboxane receptor antagonist, reduces development of atherosclerosis in apo E-deficient mice. Journal of Molecular and Cellular Cardiology, 2007, 42, S33-S34.	1.9	0
47	Design, Synthesis, and SAR Study of a Series of <i>N</i> -Alkyl- <i>N</i> i>â€~-[2-(aryloxy)-5-nitrobenzenesulfonyl]ureas and -cyanoguanidine as Selective Antagonists of the TPα and TPβ Isoforms of the Human Thromboxane A ₂ Receptor. Journal of Medicinal Chemistry, 2007, 50, 3928-3936.	6.4	13
48	Cardiovascular haemodynamics and ventriculo-arterial coupling in an acute pig model of coronary ischaemia-reperfusion. Experimental Physiology, 2007, 92, 127-137.	2.0	3
49	BM-520, an original TXA2 modulator, inhibits the action of thromboxane A2 and 8-iso-prostaglandin F2α in vitro and in vivo on human and rodent platelets, and aortic vascular smooth muscles from rodents. Prostaglandins and Other Lipid Mediators, 2007, 84, 14-23.	1.9	8
50	Synthesis and Pharmacological Evaluation of Novel Nitrobenzenic Thromboxane Modulators as Antiplatelet Agents Acting on Both the Alpha and Beta Isoforms of the Human Thromboxane Receptor. Journal of Medicinal Chemistry, 2006, 49, 3701-3709.	6.4	12
51	Evaluation of BM-573, a novel TXA2 synthase inhibitor and receptor antagonist, in a porcine model of myocardial ischemia-reperfusion. Prostaglandins and Other Lipid Mediators, 2006, 79, 53-73.	1.9	3
52	Coxibs and Cardiovascular Side-Effects: From Light to Shadow. Current Pharmaceutical Design, 2006, 12, 971-975.	1.9	118
53	From the Design to the Clinical Application of Thromboxane Modulators. Current Pharmaceutical Design, 2006, 12, 903-923.	1.9	58
54	Effects of BM-573, a thromboxane A2 modulator on systemic hemodynamics perturbations induced by U-46619 in the pig. Prostaglandins and Other Lipid Mediators, 2005, 78, 82-95.	1.9	3

#	Article	IF	CITATIONS
55	In Vitro and in Vivo Pharmacological Characterization of BM-613 [N-n-Pentyl-N′-[2-(4′-methylphenylamino)-5-nitrobenzenesulfonyl]urea], a Novel Dual Thromboxane Synthase Inhibitor and Thromboxane Receptor Antagonist. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 293-301.	2.5	12
56	Effects of reperfusion on left ventricular hemodynamics and ventriculo-arterial coupling in acutely ischemic pigs. Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 169-170.	1.6	0
57	Effects of Dobutamine on Left Ventriculoarterial Coupling and Mechanical Efficiency in Acutely Ischemic Pigs. Journal of Cardiovascular Pharmacology, 2005, 45, 144-152.	1.9	4
58	Characterization of an original model of myocardial infarction provoked by coronary artery thrombosis induced by ferric chloride in pig. Thrombosis Research, 2005, 116, 431-442.	1.7	21
59	Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends in Pharmacological Sciences, 2005, 26, 639-644.	8.7	90
60	Pharmacological Profile and Therapeutic Potential of BMâ€573, a Combined Thromboxane Receptor Antagonist and Synthase Inhibitor. Cardiovascular Drug Reviews, 2005, 23, 1-14.	4.1	14
61	New Developments on Thromboxane Modulators. Mini-Reviews in Medicinal Chemistry, 2004, 4, 649-657.	2.4	10
62	Effect of BM-573 [N-Terbutyl-N′-[2-(4′-methylphenylamino)-5-nitro-benzenesulfonyl]urea], a Dual Thromboxane Synthase Inhibitor and Thromboxane Receptor Antagonist, in a Porcine Model of Acute Pulmonary Embolism. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 964-972.	2.5	34
63	New Developments on Thromboxane and Prostacyclin Modulators Part I: Thromboxane Modulators. Current Medicinal Chemistry, 2004, 11, 1223-1241.	2.4	77
64	Pharmacological Characterization of N-tert-Butyl-N′-[2-(4′-methylphenylamino)-5-nitrobenzenesulfonyl]urea (BM-573), a Novel Thromboxane A2 Receptor Antagonist and Thromboxane Synthase Inhibitor in a Rat Model of Arterial Thrombosis and Its Effects on Bleeding Time. Journal of Pharmacology and Experimental Therapeutics, 2004, 309,	2.5	28
65	498-505. Pharmacological evaluation of both enantiomers of (R,S)-BM-591 as thromboxane A2 receptor antagonists and thromboxane synthase inhibitors. Prostaglandins and Other Lipid Mediators, 2004, 74, 75-86.	1.9	1
66	New Developments on Thromboxane and Prostacyclin Modulators Part II: Prostacyclin Modulators. Current Medicinal Chemistry, 2004, 11, 1243-1252.	2.4	73
67	Progress in the Field of GPIIb/IIIa Antagonists. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2004, 2, 157-167.	1.7	13
68	Update on GPIIb/IIIa antagonists. Expert Opinion on Therapeutic Patents, 2003, 13, 1173-1188.	5.0	2