Srilatha Sakamuru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9872789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochemical Pharmacology, 2021, 184, 114368.	4.4	19
2	Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. Scientific Reports, 2021, 11, 6725.	3.3	25
3	Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nature Communications, 2021, 12, 1398.	12.8	17
4	Predictive Models to Identify Small Molecule Activators and Inhibitors of Opioid Receptors. Journal of Chemical Information and Modeling, 2021, 61, 2675-2685.	5.4	14
5	Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metabolism and Disposition, 2021, 49, 822-832.	3.3	14
6	Methylene blue is a potent and broad-spectrum inhibitor against Zika virus <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2020, 9, 2404-2416.	6.5	26
7	Identification and Profiling of Environmental Chemicals That Inhibit the TGFβ/SMAD Signaling Pathway. Chemical Research in Toxicology, 2019, 32, 2433-2444.	3.3	4
8	Pyrazole-4-Carboxamide (YW2065): A Therapeutic Candidate for Colorectal Cancer via Dual Activities of Wnt/l²-Catenin Signaling Inhibition and AMP-Activated Protein Kinase (AMPK) Activation. Journal of Medicinal Chemistry, 2019, 62, 11151-11164.	6.4	28
9	Triazole-Based Inhibitors of the Wnt/β-Catenin Signaling Pathway Improve Glucose and Lipid Metabolisms in Diet-Induced Obese Mice. Journal of Medicinal Chemistry, 2019, 62, 727-741.	6.4	16
10	Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicological Sciences, 2019, 167, 282-292.	3.1	42
11	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	4.1	61
12	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
13	Characterization of three human cell line models for highâ€throughput neuronal cytotoxicity screening. Journal of Applied Toxicology, 2017, 37, 167-180.	2.8	49
14	Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology, 2017, 385, 48-58.	4.2	24
15	Development and Validation of a Computational Model for Androgen Receptor Activity. Chemical Research in Toxicology, 2017, 30, 946-964.	3.3	163
16	Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Research, 2017, 27, 1046-1064.	12.0	153
17	Tox21Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs. Frontiers in Environmental Science, 2016, 3, .	3.3	106
18	Mitochondrial Membrane Potential Assay. Methods in Molecular Biology, 2016, 1473, 17-22.	0.9	150

Srilatha Sakamuru

#	Article	IF	CITATIONS
19	Using β-Lactamase and NanoLuc Luciferase Reporter Gene Assays to Identify Inhibitors of the HIF-1 Signaling Pathway. Methods in Molecular Biology, 2016, 1473, 23-31.	0.9	4
20	A Novel Chemotherapeutic Agent to Treat Tumors with DNA Mismatch Repair Deficiencies. Cancer Research, 2016, 76, 4183-4191.	0.9	21
21	Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nature Communications, 2016, 7, 10425.	12.8	202
22	Identification of compounds that modulate retinol signaling using a cell-based qHTS assay. Toxicology in Vitro, 2016, 32, 287-296.	2.4	8
23	Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library. Toxicological Sciences, 2015, 147, 446-457.	3.1	61
24	Population-Based <i>in Vitro</i> Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study. Environmental Health Perspectives, 2015, 123, 458-466.	6.0	89
25	Identification of known drugs targeting the endoplasmic reticulum stress response. Analytical and Bioanalytical Chemistry, 2015, 407, 5343-5351.	3.7	11
26	AroER Tri-Screen Is a Biologically Relevant Assay for Endocrine Disrupting Chemicals Modulating the Activity of Aromatase and/or the Estrogen Receptor. Toxicological Sciences, 2014, 139, 198-209.	3.1	27
27	Systematic Study of Mitochondrial Toxicity of Environmental Chemicals Using Quantitative High Throughput Screening. Chemical Research in Toxicology, 2013, 26, 1323-1332.	3.3	72
28	Identification of repurposed small molecule drugs for chordoma therapy. Cancer Biology and Therapy, 2013, 14, 638-647.	3.4	32
29	High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5423-5428.	7.1	104
30	Application of a homogenous membrane potential assay to assess mitochondrial function. Physiological Genomics, 2012, 44, 495-503.	2.3	77
31	Reply to Kojo: Mechanisms of antioxidant-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2029-E2029.	7.1	1
32	Synthesis and evaluation of quinazolin-4-ones as hypoxia-inducible factor-1α inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5239-5243.	2.2	10
33	Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repairâ€deficient chicken DT40 cell lines. Environmental and Molecular Mutagenesis, 2011, 52, 547-561.	2.2	47
34	Identification of Clinically Used Drugs That Activate Pregnane X Receptors. Drug Metabolism and Disposition, 2011, 39, 151-159.	3.3	91
35	Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors. Environmental Health Perspectives, 2011, 119, 1142-1148.	6.0	189
36	Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochemical Pharmacology, 2010, 79, 1272-1280.	4.4	214

3

#	Article	IF	CITATIONS
37	Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity. Environmental Science & Technology, 2010, 44, 5979-5985.	10.0	162
38	HTS-Compatible β-Lactamase Transcriptional Reporter Gene Assay for Interrogating the Heat Shock Response Pathway. Current Chemical Genomics, 2009, 3, 1-6.	2.0	8