Alberto Testolin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/987025/publications.pdf Version: 2024-02-01

ALREDTO TESTOLIN

#	Article	IF	CITATIONS
1	Detecting Submerged Objects Using Active Acoustics and Deep Neural Networks: A Test Case for Pelagic Fish. IEEE Transactions on Mobile Computing, 2022, 21, 2776-2788.	5.8	18
2	Do estimates of numerosity really adhere to Weber's law? A reexamination of two case studies. Psychonomic Bulletin and Review, 2021, 28, 158-168.	2.8	9
3	A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients. Brain Informatics, 2021, 8, 8.	3.0	11
4	The phase space of meaning model of psychopathology: A computer simulation modelling study. PLoS ONE, 2021, 16, e0249320.	2.5	7
5	Learning Numerosity Representations with Transformers: Number Generation Tasks and Out-of-Distribution Generalization. Entropy, 2021, 23, 857.	2.2	2
6	Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 955-969.	7.9	17
7	Poor numerical performance of guppies tested in a Skinner box. Scientific Reports, 2020, 10, 16724.	3.3	4
8	Machine Learning-Aided Design Of Thinned Antenna Arrays For Optimized Network Level Performance. , 2020, , .		11
9	Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets. Sensors, 2020, 20, 2945.	3.8	21
10	Visual sense of number vs. sense of magnitude in humans and machines. Scientific Reports, 2020, 10, 10045.	3.3	23
11	The Challenge of Modeling the Acquisition of Mathematical Concepts. Frontiers in Human Neuroscience, 2020, 14, 100.	2.0	9
12	Emergence of Network Motifs in Deep Neural Networks. Entropy, 2020, 22, 204.	2.2	6
13	Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. Developmental Science, 2020, 23, e12940.	2.4	33
14	A Systematic Assessment of Feature Extraction Methods for Robust Prediction of Neuropsychological Scores from Functional Connectivity Data. Lecture Notes in Computer Science, 2020, , 29-40.	1.3	2
15	Distributed reinforcement learning for flexible UAV swarm control with transfer learning capabilities. , 2020, , .		10
16	Long-Term Prediction of Physical Interactions: A Challenge for Deep Generative Models. Lecture Notes in Computer Science, 2020, , 83-94.	1.3	0
17	Numerosity Representation in InfoGAN: An Empirical Study. Lecture Notes in Computer Science, 2019, , 49-60.	1.3	2
18	Deep learning systems as complex networks. Journal of Complex Networks, 2019, , .	1.8	4

Alberto Testolin

#	Article	IF	CITATIONS
19	Underwater Acoustic Detection and Localization with a Convolutional Denoising Autoencoder. , 2019, , .		7
20	Enabling Simulation-Based Optimization through Machine Learning: A Case Study on Antenna Design. , 2019, , .		2
21	QoE Multi-Stage Machine Learning for Dynamic Video Streaming. IEEE Transactions on Cognitive Communications and Networking, 2018, 4, 146-161.	7.9	19
22	An emergentist perspective on the origin of number sense. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170043.	4.0	48
23	Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning. Cognitive Processing, 2017, 18, 273-284.	1.4	9
24	Letter perception emerges from unsupervised deep learning and recycling of natural image features. Nature Human Behaviour, 2017, 1, 657-664.	12.0	42
25	On the Relationship Between the Underwater Acoustic and Optical Channels. IEEE Transactions on Wireless Communications, 2017, 16, 8037-8051.	9.2	31
26	Bilingualism advantage in handwritten character recognition: A deep learning investigation on Persian and Latin scripts. , 2017, , .		1
27	The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding. Frontiers in Computational Neuroscience, 2017, 11, 13.	2.1	7
28	Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions. Frontiers in Computational Neuroscience, 2016, 10, 73.	2.1	37
29	Learning Orthographic Structure With Sequential Generative Neural Networks. Cognitive Science, 2016, 40, 579-606.	1.7	14
30	COBANETS: A new paradigm for cognitive communications systems. , 2016, , .		4
31	Neural Networks for Sequential Data: a Preâ€ŧraining Approach based on Hidden Markov Models. Neurocomputing, 2015, 169, 323-333.	5.9	12
32	Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence. IEEE Access, 2015, 3, 1512-1530.	4.2	90
33	A machine learning approach to QoE-based video admission control and resource allocation in wireless systems. , 2014, , .		33
34	Cognition-based networks: Applying cognitive science to multimedia wireless networking. , 2014, , .		5
35	Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists. Frontiers in Psychology, 2013, 4, 251.	2.1	28
36	Modeling language and cognition with deep unsupervised learning: a tutorial overview. Frontiers in Psychology, 2013, 4, 515.	2.1	56