
Olivier Gascuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9868575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A tutorial on the balanced minimum evolution problem. European Journal of Operational Research, 2022, 300, 1-19.	5.7	4
2	Genome-wide diversity of Zika virus: Exploring spatio-temporal dynamics to guide a new nomenclature proposal. Virus Evolution, 2022, 8, veac029.	4.9	5
3	Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genomics and Bioinformatics, 2021, 3, lqab075.	3.2	50
4	Cuban history of CRF19 recombinant subtype of HIV-1. PLoS Pathogens, 2021, 17, e1009786.	4.7	3
5	Using machine learning and big data to explore the drug resistance landscape in HIV. PLoS Computational Biology, 2021, 17, e1008873.	3.2	8
6	Drug resistance mutations in HIV: new bioinformatics approaches and challenges. Current Opinion in Virology, 2021, 51, 56-64.	5.4	23
7	A Darwinian Uncertainty Principle. Systematic Biology, 2020, 69, 521-529.	5.6	12
8	Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12522-12523.	7.1	68
9	A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Molecular Biology and Evolution, 2019, 36, 2069-2085.	8.9	153
10	NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Research, 2019, 47, W260-W265.	14.5	489
11	Distribution and asymptotic behavior of the phylogenetic transfer distance. Journal of Mathematical Biology, 2019, 79, 485-508.	1.9	2
12	Generalized Bootstrap Supports for Phylogenetic Analyses of Protein Sequences Incorporating Alignment Uncertainty. Systematic Biology, 2018, 67, 997-1009.	5.6	12
13	Improving pairwise comparison of protein sequences with domain co-occurrence. PLoS Computational Biology, 2018, 14, e1005889.	3.2	7
14	SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution, 2017, 34, 2422-2424.	8.9	1,572
15	The Role of Phylogenetics as a Tool to Predict the Spread of Resistance. Journal of Infectious Diseases, 2017, 216, S820-S823.	4.0	10
16	The combinatorics of overlapping genes. Journal of Theoretical Biology, 2017, 415, 90-101.	1.7	29
17	Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study. PLoS Computational Biology, 2017, 13, e1005416.	3.2	39
18	In-depth analysis of HIV-1 drug resistance mutations in HIV-infected individuals failing first-line regimens in West and Central Africa. Aids, 2016, 30, 2577-2589.	2.2	24

OLIVIER GASCUEL

#	Article	IF	CITATIONS
19	Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11537-11542.	7.1	64
20	A â€~Stochastic Safety Radius' for Distance-Based Tree Reconstruction. Algorithmica, 2016, 74, 1386-1403.	1.3	10
21	Fast Dating Using Least-Squares Criteria and Algorithms. Systematic Biology, 2016, 65, 82-97.	5.6	336
22	A phylotype-based analysis highlights the role of drug-naive HIV-positive individuals in the transmission of antiretroviral resistance in the UK. Aids, 2015, 29, 1917-1925.	2.2	41
23	TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction: Figure 1 Nucleic Acids Research, 2015, 43, W3-W6.	14.5	44
24	Mathematical and Computational Evolutionary Biology (2013). Systematic Biology, 2015, 64, 1-2.	5.6	52
25	FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program: Table 1 Molecular Biology and Evolution, 2015, 32, 2798-2800.	8.9	1,103
26	Deep Conservation of Human Protein Tandem Repeats within the Eukaryotes. Molecular Biology and Evolution, 2014, 31, 1132-1148.	8.9	62
27	Predicting the Ancestral Character Changes in a Tree is Typically Easier than Predicting the Root State. Systematic Biology, 2014, 63, 421-435.	5.6	31
28	Identification of Divergent Protein Domains by Combining HMM-HMM Comparisons and Co-Occurrence Detection. PLoS ONE, 2014, 9, e95275.	2.5	6
29	Sexually-Transmitted/Founder HIV-1 Cannot Be Directly Predicted from Plasma or PBMC-Derived Viral Quasispecies in the Transmitting Partner. PLoS ONE, 2013, 8, e69144.	2.5	18
30	Branch Lengths on Birth–Death Trees and the Expected Loss of Phylogenetic Diversity. Systematic Biology, 2012, 61, 195-203.	5.6	67
31	Modeling Protein Evolution with Several Amino Acid Replacement Matrices Depending on Site Rates. Molecular Biology and Evolution, 2012, 29, 2921-2936.	8.9	201
32	Combinatorics of distance-based tree inference. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16443-16448.	7.1	13
33	The Origin and Evolutionary History of HIV-1 Subtype C in Senegal. PLoS ONE, 2012, 7, e33579.	2.5	20
34	EuPathDomains: The divergent domain database for eukaryotic pathogens. Infection, Genetics and Evolution, 2011, 11, 698-707.	2.3	8
35	Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 2011, 60, 685-699.	5.6	912
36	Robustness of Phylogenetic Inference Based on Minimum Evolution. Bulletin of Mathematical Biology, 2010, 72, 1820-1839.	1.9	15

OLIVIER GASCUEL

#	Article	IF	CITATIONS
37	Accounting for Solvent Accessibility and Secondary Structure in Protein Phylogenetics Is Clearly Beneficial. Systematic Biology, 2010, 59, 277-287.	5.6	107
38	New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 2010, 59, 307-321.	5.6	15,166
39	SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 2010, 27, 221-224.	8.9	5,075
40	Inferring ancestral sequences in taxon-rich phylogenies. Mathematical Biosciences, 2010, 227, 125-135.	1.9	20
41	Consistency of Topological Moves Based on the Balanced Minimum Evolution Principle of Phylogenetic Inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6, 110-117.	3.0	27
42	An Improved General Amino Acid Replacement Matrix. Molecular Biology and Evolution, 2008, 25, 1307-1320.	8.9	2,748
43	Phylogenetic mixture models for proteins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3965-3976.	4.0	202
44	Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics, 2008, 24, 2317-2323.	4.1	292
45	Duplication and Inversion History of a Tandemly Repeated Genes Family. Journal of Computational Biology, 2007, 14, 462-478.	1.6	26
46	Genomics, biogeography, and the diversification of placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14395-14400.	7.1	158
47	Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Research, 2007, 17, 320-327.	5.5	231
48	SDM: A Fast Distance-Based Approach for (Super)Tree Building in Phylogenomics. Systematic Biology, 2006, 55, 740-755.	5.6	69
49	Neighbor-Joining Revealed. Molecular Biology and Evolution, 2006, 23, 1997-2000.	8.9	252
50	Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Systematic Biology, 2006, 55, 539-552.	5.6	2,426
51	An exact and polynomial distance-based algorithm to reconstruct single copy tandem duplication trees. Journal of Discrete Algorithms, 2005, 3, 362-374.	0.7	4
52	Topological Rearrangements and Local Search Method for Tandem Duplication Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 15-28.	3.0	16
53	Performance Analysis of Hierarchical Clustering Algorithms. Journal of Classification, 2004, 21, 3-18.	2.2	21
54	On the consistency of the minimum evolution principle of phylogenetic inference. Discrete Applied Mathematics, 2003, 127, 63-77.	0.9	17

OLIVIER GASCUEL

#	Article	IF	CITATIONS
55	A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 2003, 52, 696-704.	5.6	15,438
56	Theoretical Foundation of the Balanced Minimum Evolution Method of Phylogenetic Inference and Its Relationship to Weighted Least-Squares Tree Fitting. Molecular Biology and Evolution, 2003, 21, 587-598.	8.9	201
57	The Combinatorics of Tandem Duplication Trees. Systematic Biology, 2003, 52, 110-118.	5.6	23
58	Improvement of Distance-Based Phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets. Molecular Biology and Evolution, 2002, 19, 1952-1963.	8.9	63
59	Reconstructing the Duplication History of Tandemly Repeated Genes. Molecular Biology and Evolution, 2002, 19, 278-288.	8.9	71
60	Efficient Biased Estimation of Evolutionary Distances When Substitution Rates Vary Across Sites. Molecular Biology and Evolution, 2002, 19, 534-543.	8.9	40
61	Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle. Journal of Computational Biology, 2002, 9, 687-705.	1.6	417
62	Quartet-Based Phylogenetic Inference: Improvements and Limits. Molecular Biology and Evolution, 2001, 18, 1103-1116.	8.9	93
63	Strengths and Limitations of the Minimum Evolution Principle. Systematic Biology, 2001, 50, 621-627.	5.6	45
64	Data Model and Classification by Trees: The Minimum Variance Reduction (MVR) Method. Journal of Classification, 2000, 17, 67-99.	2.2	22
65	On the Optimization Principle in Phylogenetic Analysis and the Minimum-Evolution Criterion. Molecular Biology and Evolution, 2000, 17, 401-405.	8.9	64
66	Twelve Numerical, Symbolic and Hybrid Supervised Classification Methods. International Journal of Pattern Recognition and Artificial Intelligence, 1998, 12, 517-571.	1.2	10
67	A reduction algorithm for approximating a (nonmetric) dissimilarity by a tree distance. Journal of Classification, 1996, 13, 129-155.	2.2	20
68	Distribution-free performance bounds with the resubstitution error estimate. Pattern Recognition Letters, 1992, 13, 757-764.	4.2	14
69	Protein export in prokaryotes and eukaryotes: Indications of a difference in the mechanism of exportation. Journal of Molecular Evolution, 1986, 24, 130-142.	1.8	46