Anders K Eklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986717/publications.pdf

Version: 2024-02-01

567281 345221 4,253 52 15 citations h-index papers

36 g-index 63 63 63 7914 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vox2Vox: 3D-GAN for Brain Tumour Segmentation. Lecture Notes in Computer Science, 2021, , 274-284.	1.3	46
2	Spatial 3D Matérn Priors for Fast Whole-Brain fMRI Analysis. Bayesian Analysis, 2021, 16, .	3.0	2
3	Deep-learning for thyroid microstructure segmentation in 2D OCT images. , 2021, , .		O
4	Characterization Of Spatial Dynamics Of Fmri Data In White Matter Using Diffusion-Informed White Matter Harmonics., 2021, 2021, 1586-1590.		1
5	Virtual EEG-electrodes: Convolutional neural networks as a method for upsampling or restoring channels. Journal of Neuroscience Methods, 2021, 355, 109126.	2.5	10
6	Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?. Diagnostics, 2021, 11, 1159.	2.6	7
7	Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 2021, 109, 1769-1775.	8.1	27
8	Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters. Neurolmage, 2021, 237, 118095.	4.2	22
9	What is The Best Data Augmentation For 3D Brain Tumor Segmentation?., 2021,,.		17
10	Physiological Gaussian process priors for the hemodynamics in fMRI analysis. Journal of Neuroscience Methods, 2020, 342, 108778.	2.5	5
11	Anatomically Informed Bayesian Spatial Priors for FMRI Analysis. , 2020, , .		1
12	Key insights in the AIDA community policy on sharing of clinical imaging data for research in Sweden. Scientific Data, 2020, 7, 331.	5. 3	11
13	Improved Functional MRI Activation Mapping in White Matter Through Diffusion-Adapted Spatial Filtering. , 2020, , .		4
14	Optical coherence tomography for thyroid pathology: 3D analysis of tissue microstructure. Biomedical Optics Express, 2020, 11, 4130.	2.9	4
15	Refacing: Reconstructing Anonymized Facial Features Using GANS. , 2019, , .		29
16	Using the Wild Bootstrap to Quantify Uncertainty in Mean Apparent Propagator MRI. Frontiers in Neuroinformatics, 2019, 13, 43.	2.5	3
17	Reply to Chen et al.: Parametric methods for cluster inference perform worse for twoâ€sided t â€ŧests. Human Brain Mapping, 2019, 40, 1689-1691.	3.6	4
18	Classification of short time series in early Parkinsons disease with deep learning of fuzzy recurrence plots. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 1306-1317.	13.1	52

#	Article	IF	CITATIONS
19	Graph Spectral Characterization of Brain Cortical Morphology. , 2019, 2019, 458-462.		10
20	Evaluation of Six Phase Encoding Based Susceptibility Distortion Correction Methods for Diffusion MRI. Frontiers in Neuroinformatics, 2019, 13, 76.	2.5	15
21	Cluster failure revisited: Impact of first level design and physiological noise on cluster false positive rates. Human Brain Mapping, 2019, 40, 2017-2032.	3.6	60
22	Generating Diffusion MRI Scalar Maps from T1 Weighted Images Using Generative Adversarial Networks. Lecture Notes in Computer Science, 2019, , 489-498.	1.3	14
23	Bayesian uncertainty quantification in linear models for diffusion MRI. Neurolmage, 2018, 175, 272-285.	4.2	14
24	Vascular risk factors in INPH. Neurology, 2017, 88, 577-585.	1.1	77
25	A defense of using resting-state fMRI as null data for estimating false positive rates. Cognitive Neuroscience, 2017, 8, 144-149.	1.4	14
26	Reply to Brown and Behrmann, Cox, et al., and Kessler et al.: Data and code sharing is the way forward for fMRI. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3374-E3375.	7.1	16
27	Gaussian process regression can turn non-uniform and undersampled diffusion MRI data into diffusion spectrum imaging. , 2017, , .		4
28	An adaptive, individualized fMRI delay discounting procedure to increase flexibility and optimize scanner time. Neurolmage, 2017, 161, 56-66.	4.2	21
29	Bayesian Diffusion Tensor Estimation with Spatial Priors. Lecture Notes in Computer Science, 2017, , 372-383.	1.3	7
30	Surface and curve skeleton from a structure tensor analysis applied on mastoid air cells in human temporal bones., 2017,,.		0
31	Fast Bayesian whole-brain fMRI analysis with spatial 3D priors. Neurolmage, 2017, 146, 211-225.	4.2	36
32	Bayesian Rician Regression for Neuroimaging. Frontiers in Neuroscience, 2017, 11, 586.	2.8	6
33	Bayesian Heteroscedastic Regression for Diffusion Tensor Imaging. Mathematics and Visualization, 2017, , 257-282.	0.6	5
34	A Bayesian heteroscedastic GLM with application to fMRI data with motion spikes. NeuroImage, 2017, 155, 354-369.	4.2	12
35	BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology, 2017, 13, e1005209.	3.2	218
36	Repeated Tractography of a Single Subject: How High Is the Variance?. Mathematics and Visualization, 2017, , 331-354.	0.6	1

#	Article	IF	CITATIONS
37	Enhancement of micro-channels within the human mastoid bone based on local structure tensor analysis. , $2016, , .$		0
38	Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7900-7905.	7.1	2,809
39	Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. , $2015, \ldots$		13
40	BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs. Frontiers in Neuroinformatics, 2014, 8, 24.	2.5	74
41	Harnessing graphics processing units for improved neuroimaging statistics. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 587-597.	2.0	3
42	Medical image processing on the GPU – Past, present and future. Medical Image Analysis, 2013, 17, 1073-1094.	11.6	321
43	A functional connectivity inspired approach to non-local fMRI analysis., 2012,,.		2
44	Does parametric fMRI analysis with SPM yield valid results?â€"An empirical study of 1484 rest datasets. NeuroImage, 2012, 61, 565-578.	4.2	103
45	fMRI analysis on the GPU—Possibilities and challenges. Computer Methods and Programs in Biomedicine, 2012, 105, 145-161.	4.7	47
46	A GPU accelerated interactive interface for exploratory functional connectivity analysis of FMRI data. , $2011, , .$		8
47	Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single-Subject fMRI Analysis. International Journal of Biomedical Imaging, 2011, 2011, 1-15.	3.9	26
48	True 4D Image Denoising on the GPU. International Journal of Biomedical Imaging, 2011, 2011, 1-16.	3.9	20
49	Using the Local Phase of the Magnitude of the Local Structure Tensor for Image Registration. Lecture Notes in Computer Science, 2011, , 414-423.	1.3	2
50	Phase based volume registration using cuda. , 2010, , .		14
51	A Brain Computer Interface for Communication Using Real-Time fMRI. , 2010, , .		8
52	Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification. Lecture Notes in Computer Science, 2009, 12, 1000-1008.	1.3	11