Anders K Eklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/986717/publications.pdf Version: 2024-02-01

ANDERS K FRITIND

#	Article	IF	CITATIONS
1	Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7900-7905.	7.1	2,809
2	Medical image processing on the GPU – Past, present and future. Medical Image Analysis, 2013, 17, 1073-1094.	11.6	321
3	BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology, 2017, 13, e1005209.	3.2	218
4	Does parametric fMRI analysis with SPM yield valid results?—An empirical study of 1484 rest datasets. NeuroImage, 2012, 61, 565-578.	4.2	103
5	Vascular risk factors in INPH. Neurology, 2017, 88, 577-585.	1.1	77
6	BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs. Frontiers in Neuroinformatics, 2014, 8, 24.	2.5	74
7	Cluster failure revisited: Impact of first level design and physiological noise on cluster false positive rates. Human Brain Mapping, 2019, 40, 2017-2032.	3.6	60
8	Classification of short time series in early Parkinsons disease with deep learning of fuzzy recurrence plots. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 1306-1317.	13.1	52
9	fMRI analysis on the GPU—Possibilities and challenges. Computer Methods and Programs in Biomedicine, 2012, 105, 145-161.	4.7	47
10	Vox2Vox: 3D-GAN for Brain Tumour Segmentation. Lecture Notes in Computer Science, 2021, , 274-284.	1.3	46
11	Fast Bayesian whole-brain fMRI analysis with spatial 3D priors. NeuroImage, 2017, 146, 211-225.	4.2	36
12	Refacing: Reconstructing Anonymized Facial Features Using GANS. , 2019, , .		29
13	Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 2021, 109, 1769-1775.	8.1	27
14	Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single-Subject fMRI Analysis. International Journal of Biomedical Imaging, 2011, 2011, 1-15.	3.9	26
15	Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters. NeuroImage, 2021, 237, 118095.	4.2	22
16	An adaptive, individualized fMRI delay discounting procedure to increase flexibility and optimize scanner time. NeuroImage, 2017, 161, 56-66.	4.2	21
17	True 4D Image Denoising on the GPU. International Journal of Biomedical Imaging, 2011, 2011, 1-16.	3.9	20
18	What is The Best Data Augmentation For 3D Brain Tumor Segmentation?. , 2021, , .		17

ANDERS K EKLUND

#	Article	IF	CITATIONS
19	Reply to Brown and Behrmann, Cox, et al., and Kessler et al.: Data and code sharing is the way forward for fMRI. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3374-E3375.	7.1	16
20	Evaluation of Six Phase Encoding Based Susceptibility Distortion Correction Methods for Diffusion MRI. Frontiers in Neuroinformatics, 2019, 13, 76.	2.5	15
21	Phase based volume registration using cuda. , 2010, , .		14
22	A defense of using resting-state fMRI as null data for estimating false positive rates. Cognitive Neuroscience, 2017, 8, 144-149.	1.4	14
23	Bayesian uncertainty quantification in linear models for diffusion MRI. NeuroImage, 2018, 175, 272-285.	4.2	14
24	Generating Diffusion MRI Scalar Maps from T1 Weighted Images Using Generative Adversarial Networks. Lecture Notes in Computer Science, 2019, , 489-498.	1.3	14
25	Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. , 2015, , .		13
26	A Bayesian heteroscedastic GLM with application to fMRI data with motion spikes. NeuroImage, 2017, 155, 354-369.	4.2	12
27	Key insights in the AIDA community policy on sharing of clinical imaging data for research in Sweden. Scientific Data, 2020, 7, 331.	5.3	11
28	Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification. Lecture Notes in Computer Science, 2009, 12, 1000-1008.	1.3	11
29	Graph Spectral Characterization of Brain Cortical Morphology. , 2019, 2019, 458-462.		10
30	Virtual EEG-electrodes: Convolutional neural networks as a method for upsampling or restoring channels. Journal of Neuroscience Methods, 2021, 355, 109126.	2.5	10
31	A Brain Computer Interface for Communication Using Real-Time fMRI. , 2010, , .		8
32	A GPU accelerated interactive interface for exploratory functional connectivity analysis of FMRI data. , 2011, , .		8
33	Bayesian Diffusion Tensor Estimation with Spatial Priors. Lecture Notes in Computer Science, 2017, , 372-383.	1.3	7
34	Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?. Diagnostics, 2021, 11, 1159.	2.6	7
35	Bayesian Rician Regression for Neuroimaging. Frontiers in Neuroscience, 2017, 11, 586.	2.8	6
36	Physiological Gaussian process priors for the hemodynamics in fMRI analysis. Journal of Neuroscience Methods, 2020, 342, 108778.	2.5	5

ANDERS K EKLUND

#	Article	IF	CITATIONS
37	Bayesian Heteroscedastic Regression for Diffusion Tensor Imaging. Mathematics and Visualization, 2017, , 257-282.	0.6	5
38	Gaussian process regression can turn non-uniform and undersampled diffusion MRI data into diffusion spectrum imaging. , 2017, , .		4
39	Reply to Chen et al.: Parametric methods for cluster inference perform worse for twoâ€sided t â€ŧests. Human Brain Mapping, 2019, 40, 1689-1691.	3.6	4
40	Improved Functional MRI Activation Mapping in White Matter Through Diffusion-Adapted Spatial Filtering. , 2020, , .		4
41	Optical coherence tomography for thyroid pathology: 3D analysis of tissue microstructure. Biomedical Optics Express, 2020, 11, 4130.	2.9	4
42	Harnessing graphics processing units for improved neuroimaging statistics. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 587-597.	2.0	3
43	Using the Wild Bootstrap to Quantify Uncertainty in Mean Apparent Propagator MRI. Frontiers in Neuroinformatics, 2019, 13, 43.	2.5	3
44	A functional connectivity inspired approach to non-local fMRI analysis. , 2012, , .		2
45	Spatial 3D Matérn Priors for Fast Whole-Brain fMRI Analysis. Bayesian Analysis, 2021, 16, .	3.0	2
46	Using the Local Phase of the Magnitude of the Local Structure Tensor for Image Registration. Lecture Notes in Computer Science, 2011, , 414-423.	1.3	2
47	Anatomically Informed Bayesian Spatial Priors for FMRI Analysis. , 2020, , .		1
48	Characterization Of Spatial Dynamics Of Fmri Data In White Matter Using Diffusion-Informed White Matter Harmonics. , 2021, 2021, 1586-1590.		1
49	Repeated Tractography of a Single Subject: How High Is the Variance?. Mathematics and Visualization, 2017, , 331-354.	0.6	1
50	Enhancement of micro-channels within the human mastoid bone based on local structure tensor analysis. , 2016, , .		0
51	Surface and curve skeleton from a structure tensor analysis applied on mastoid air cells in human temporal bones. , 2017, , .		0
52	Deep-learning for thyroid microstructure segmentation in 2D OCT images. , 2021, , .		0

4