Alban Latremoliere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9865546/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesityâ€Induced Breathing Variability During Sleep Is Independent of Apneas and Sleep Fragmentation. FASEB Journal, 2022, 36, .	0.5	1
2	0167 Obesity-Induced Breathing Variability During Sleep Is Not Entirely Attributed to Apneas and Sleep Fragmentation. Sleep, 2022, 45, A77-A78.	1.1	0
3	Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	29
4	Sepiapterin Reductase Inhibition Leading to Selective Reduction of Inflammatory Joint Pain in Mice and Increased Urinary Sepiapterin Levels in Humans and Mice. Arthritis and Rheumatology, 2020, 72, 57-66.	5.6	13
5	Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell, 2019, 176, 716-728.e18.	28.9	98
6	Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Reports, 2018, 22, 1301-1312.	6.4	142
7	Combining Human and Rodent Genetics to Identify New Analgesics. Neuroscience Bulletin, 2018, 34, 143-155.	2.9	15
8	Optical cuff for optogenetic control of the peripheral nervous system. Journal of Neural Engineering, 2018, 15, 015002.	3.5	29
9	The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, 563, 564-568.	27.8	174
10	Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature, 2018, 561, 547-550.	27.8	171
11	NMDA Receptor Activation Underlies the Loss of Spinal Dorsal Horn Neurons and the Transition to Persistent Pain after Peripheral Nerve Injury. Cell Reports, 2018, 23, 2678-2689.	6.4	103
12	Neuronal-Specific TUBB3 Is Not Required for Normal Neuronal Function but Is Essential for Timely Axon Regeneration. Cell Reports, 2018, 24, 1865-1879.e9.	6.4	101
13	Decreased alertness due to sleep loss increases pain sensitivity in mice. Nature Medicine, 2017, 23, 768-774.	30.7	119
14	Time-Resolved Fast Mammalian Behavior Reveals the Complexity of Protective Pain Responses. Cell Reports, 2017, 20, 89-98.	6.4	41
15	Arachidonic acid containing phosphatidylcholine increases due to microglial activation in ipsilateral spinal dorsal horn following spared sciatic nerve injury. PLoS ONE, 2017, 12, e0177595.	2.5	13
16	Ensuring transparency and minimization of methodologic bias in preclinical pain research. Pain, 2016, 157, 901-909.	4.2	70
17	Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Science Signaling, 2016, 9, ra32.	3.6	43
18	Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. European Journal of Neuroscience, 2016, 43, 451-462.	2.6	72

Alban Latremoliere

#	Article	IF	CITATIONS
19	Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS. Neuron, 2015, 86, 1215-1227.	8.1	87
20	Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron, 2015, 86, 1393-1406.	8.1	101
21	The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell–derived leukocyte elastase. Nature Medicine, 2015, 21, 518-523.	30.7	182
22	Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics. Neuron, 2015, 86, 1000-1014.	8.1	220
23	Doublecortin-Like Kinases Promote Neuronal Survival and Induce Growth Cone Reformation via Distinct Mechanisms. Neuron, 2015, 88, 704-719.	8.1	104
24	Diminished Schwann Cell Repair Responses Underlie Age-Associated Impaired Axonal Regeneration. Neuron, 2014, 83, 331-343.	8.1	215
25	Analgesia by inhibiting tetrahydrobiopterin synthesis. Current Opinion in Pharmacology, 2012, 12, 92-99.	3.5	39
26	GCH1, BH4 and Pain. Current Pharmaceutical Biotechnology, 2011, 12, 1728-1741.	1.6	56
27	Nâ€methylâ€ <scp>d</scp> â€aspartate receptorâ€mediated modulations of the antiâ€allodynic effects of 5â€HT _{1B/1D} receptor stimulation in a rat model of trigeminal neuropathic pain. European Journal of Pain, 2011, 15, 451-458.	2.8	30
28	Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. Journal of Clinical Investigation, 2011, 121, 4332-4347.	8.2	195
29	Differential anti-neuropathic pain effects of tetrodotoxin in sciatic nerve- versus infraorbital nerve-ligated rats – Behavioral, pharmacological and immunohistochemical investigations. Neuropharmacology, 2010, 58, 474-487.	4.1	30
30	Synaptic Plasticity and Central Sensitization: Author Reply. Journal of Pain, 2010, 11, 801-803.	1.4	22
31	T-Cell Infiltration and Signaling in the Adult Dorsal Spinal Cord Is a Major Contributor to Neuropathic Pain-Like Hypersensitivity. Journal of Neuroscience, 2009, 29, 14415-14422.	3.6	380
32	Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. Journal of Pain, 2009, 10, 895-926.	1.4	2,675
33	Differential Implication of Proinflammatory Cytokine Interleukin-6 in the Development of Cephalic versus Extracephalic Neuropathic Pain in Rats. Journal of Neuroscience, 2008, 28, 8489-8501.	3.6	105
34	Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury–induced Neuropathic Pain in the Rat. Molecular Therapy, 2007, 15, 687-697.	8.2	95
35	Immunolabelling of the 5â€HT _{3B} receptor subunit in the central and peripheral nervous systems in rodents. European Journal of Neuroscience, 2007, 26, 355-366.	2.6	24
36	Attenuation of pain-related behavior in a rat model of trigeminal neuropathic pain by viral-driven enkephalin overproduction in trigeminal ganglion neurons. Molecular Therapy, 2005, 11, 608-616.	8.2	83