
Hans Leemhuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9857339/publications.pdf Version: 2024-02-01

HANSLEEMHUUS

#	Article	IF	CITATIONS
1	Structural elements determining the transglycosylating activity of glycoside hydrolase family 57 glycogen branching enzymes. Proteins: Structure, Function and Bioinformatics, 2022, 90, 155-163.	2.6	9
2	The thermostable 4,6-α-glucanotransferase of <i>Bacillus coagulans</i> DSM 1 synthesizes isomaltooligosaccharides. Amylase, 2021, 5, 13-22.	1.6	8
3	GtfC Enzyme of <i>Geobacillus</i> sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 â†' 6)/(α1 â†' 4) α-Glucan and Delays Bread Staling. Journal of Agricultural and Food Chemistry, 2021, 69, 9859-9868.	5.2	7
4	Digestion kinetics of low, intermediate and highly branched maltodextrins produced from gelatinized starches with various microbial glycogen branching enzymes. Carbohydrate Polymers, 2020, 247, 116729.	10.2	12
5	Characterization of the GH13 and GH57 glycogen branching enzymes from Petrotoga mobilis SJ95 and potential role in glycogen biosynthesis. PLoS ONE, 2019, 14, e0219844.	2.5	12
6	Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity. Applied Microbiology and Biotechnology, 2019, 103, 6141-6151.	3.6	12
7	Synthesis of highly branched α-glucans with different structures using GH13 and GH57 glycogen branching enzymes. Carbohydrate Polymers, 2019, 216, 231-237.	10.2	18
8	Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Applied and Environmental Microbiology, 2015, 81, 7223-7232.	3.1	54
9	Isomalto/Malto-Polysaccharide, A Novel Soluble Dietary Fiber Made Via Enzymatic Conversion of Starch. Journal of Agricultural and Food Chemistry, 2014, 62, 12034-12044.	5.2	73
10	4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology, 2013, 97, 181-193.	3.6	52
11	Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology, 2013, 23, 1084-1096.	2.5	33
12	Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers, 2013, 93, 116-121.	10.2	115
13	Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163, 250-272.	3.8	250
14	Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel GTFB 4,6-α-glucanotransferase enzyme from Lactobacillus reuteri 121. Glycobiology, 2012, 22, 517-528.	2.5	60
15	Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 2012, 30, 366-376.	2.0	53
16	The role of conserved inulosucrase residues in the reaction and product specificity of <i>Lactobacillusâ€freuteri</i> inulosucrase. FEBS Journal, 2012, 279, 3612-3621.	4.7	23
17	4,6-α-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70. Applied and Environmental Microbiology, 2011, 77, 8154-8163.	3.1	81
18	Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology, 2010, 85, 823-835.	3.6	157

HANS LEEMHUIS

#	Article	IF	CITATIONS
19	Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology (United Kingdom), 2010, 156, 1264-1274.	1.8	93
20	Directed evolution of enzymes: Library screening strategies. IUBMB Life, 2009, 61, 222-228.	3.4	99
21	Single Amino Acid Mutations Interchange the Reaction Specificities of Cyclodextrin Glycosyltransferase and the Acarbose-Modifying Enzyme Acarviosyl Transferaseâ€. Biochemistry, 2004, 43, 13204-13213.	2.5	25
22	High-throughput screening for gene libraries expressing carbohydrate hydrolase activity. Biotechnology Letters, 2003, 25, 1643-1645.	2.2	5
23	Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins: Structure, Function and Bioinformatics, 2003, 54, 128-134.	2.6	38
24	Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. Journal of Biotechnology, 2003, 103, 203-212.	3.8	16
25	Conversion of Cyclodextrin Glycosyltransferase into a Starch Hydrolase by Directed Evolution:  The Role of Alanine 230 in Acceptor Subsite +1,. Biochemistry, 2003, 42, 7518-7526.	2.5	57
26	The fully conserved Asp residue in conserved sequence region I of the α-amylase family is crucial for the catalytic site architecture and activity. FEBS Letters, 2003, 541, 47-51.	2.8	25
27	Engineering of Hydrolysis Reaction Specificity in the Transglycosylase Cyclodextrin Glycosyltransferase. Biocatalysis and Biotransformation, 2003, 21, 261-270.	2.0	9
28	Hydrolysis and Transglycosylation Reaction Specificity of Cyclodextrin Glycosyltransferases. Journal of Applied Glycoscience (1999), 2003, 50, 263-271.	0.7	6
29	The Remote Substrate Binding Subsite â^'6 in Cyclodextrin-glycosyltransferase Controls the Transferase Activity of the Enzyme via an Induced-fit Mechanism. Journal of Biological Chemistry, 2002, 277, 1113-1119.	3.4	43
30	Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 2002, 94, 137-155.	3.8	1,075
31	Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. FEBS Letters, 2002, 514, 189-192.	2.8	47
32	Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. FEBS Journal, 2002, 270, 155-162.	0.2	38