
Brian D Hudson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985387/publications.pdf Version: 2024-02-01

RDIAN D HUDSON

#	Article	IF	CITATIONS
1	Agonist-induced phosphorylation of orthologues of the orphan receptor GPR35 functions as an activation sensor. Journal of Biological Chemistry, 2022, 298, 101655.	3.4	22
2	Allosteric ligands to study medium and long chain free fatty acid GPCRs. , 2022, , 97-116.		0
3	Chemogenetics defines a short-chain fatty acid receptor gut–brain axis. ELife, 2022, 11, .	6.0	21
4	Structureâ€Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2. ChemMedChem, 2021, 16, 3326-3341.	3.2	2
5	From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184, 5886-5901.e22.	28.9	44
6	Peptides derived from the SARS-CoV-2 receptor binding motif bind to ACE2 but do not block ACE2-mediated host cell entry or pro-inflammatory cytokine induction. PLoS ONE, 2021, 16, e0260283.	2.5	1
7	Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
8	Structure–Activity Relationship Studies of Tetrahydroquinolone Free Fatty Acid Receptor 3 Modulators. Journal of Medicinal Chemistry, 2020, 63, 3577-3595.	6.4	8
9	Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nature Chemical Biology, 2019, 15, 489-498.	8.0	52
10	Receptor selectivity between the G proteins Gα ₁₂ and Gα ₁₃ is defined by a single leucineâ€ŧoâ€ɨsoleucine variation. FASEB Journal, 2019, 33, 5005-5017.	0.5	23
11	Complex Pharmacology of Free Fatty Acid Receptors. Chemical Reviews, 2017, 117, 67-110.	47.7	209
12	Fatty acid 16:4(nâ€3) stimulates a GPR120â€induced signaling cascade in splenic macrophages to promote chemotherapy resistance FASEB Journal, 2017, 31, 2195-2209.	0.5	27
13	Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4. Molecular Pharmacology, 2017, 91, 630-641.	2.3	29
14	Development and Characterization of a Fluorescent Tracer for the Free Fatty Acid Receptor 2 (FFA2/GPR43). Journal of Medicinal Chemistry, 2017, 60, 5638-5645.	6.4	32
15	FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends in Pharmacological Sciences, 2017, 38, 809-821.	8.7	77
16	A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias. Scientific Reports, 2017, 7, 13741.	3.3	21
17	Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84. Scientific Reports, 2017, 7, 17953.	3.3	50
18	Non-equivalence of Key Positively Charged Residues of the Free Fatty Acid 2 Receptor in the Recognition and Function of Agonist Versus Antagonist Ligands. Journal of Biological Chemistry, 2016, 291, 303-317.	3.4	49

BRIAN D HUDSON

#	Article	IF	CITATIONS
19	Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer. Journal of Medicinal Chemistry, 2016, 59, 4849-4858.	6.4	40
20	Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity. Journal of Medicinal Chemistry, 2016, 59, 8868-8878.	6.4	81
21	Using Biosensors to Study Free Fatty Acid Receptor Pharmacology and Function. Handbook of Experimental Pharmacology, 2016, 236, 79-100.	1.8	1
22	A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor. Cell Chemical Biology, 2016, 23, 392-403.	5.2	30
23	Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein–Coupled Receptor 120. Molecular Pharmacology, 2016, 89, 505-520.	2.3	53
24	Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 2841-2846.	6.4	20
25	Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. British Journal of Nutrition, 2015, 113, 1677-1688.	2.3	93
26	Characterizing pharmacological ligands to study the longâ€chain fatty acid receptors <scp>GPR</scp> 40/ <scp>FFA</scp> 1 and <scp>GPR</scp> 120/ <scp>FFA</scp> 4. British Journal of Pharmacology, 2015, 172, 3254-3265.	5.4	62
27	Complex Pharmacology of Novel Allosteric Free Fatty Acid 3 Receptor Ligands. Molecular Pharmacology, 2014, 86, 200-210.	2.3	58
28	Indomethacin Treatment Prevents High Fat Diet-induced Obesity and Insulin Resistance but Not Glucose Intolerance in C57BL/6J Mice. Journal of Biological Chemistry, 2014, 289, 16032-16045.	3.4	33
29	G-protein-coupled receptors for free fatty acids: nutritional and therapeutic targets. British Journal of Nutrition, 2014, 111, S3-S7.	2.3	35
30	The Molecular Basis of Ligand Interaction at Free Fatty Acid Receptor 4 (FFA4/GPR120). Journal of Biological Chemistry, 2014, 289, 20345-20358.	3.4	60
31	The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Molecular Pharmacology, 2014, 85, 91-104.	2.3	53
32	Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists. Frontiers in Endocrinology, 2014, 5, 137.	3.5	80
33	Concomitant Action of Structural Elements and Receptor Phosphorylation Determines Arrestin-3 Interaction with the Free Fatty Acid Receptor FFA4. Journal of Biological Chemistry, 2014, 289, 18451-18465.	3.4	57
34	Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. Journal of Medicinal Chemistry, 2013, 56, 982-992.	6.4	52
35	Drugs or diet? – Developing novel therapeutic strategies targeting the free fatty acid family of <scp>GPCRs</scp> . British Journal of Pharmacology, 2013, 170, 696-711.	5.4	30
36	Defining the Molecular Basis for the First Potent and Selective Orthosteric Agonists of the FFA2 Free Fatty Acid Receptor. Journal of Biological Chemistry, 2013, 288, 17296-17312.	3.4	99

BRIAN D HUDSON

#	Article	IF	CITATIONS
37	Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes. ACS Medicinal Chemistry Letters, 2013, 4, 441-445.	2.8	58
38	The Pharmacology of TUC-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism. Molecular Pharmacology, 2013, 84, 710-725.	2.3	172
39	Minireview: The Effects of Species Ortholog and SNP Variation on Receptors for Free Fatty Acids. Molecular Endocrinology, 2013, 27, 1177-1187.	3.7	28
40	The Therapeutic Potential of Allosteric Ligands for Free Fatty Acid Sensitive GPCRs. Current Topics in Medicinal Chemistry, 2013, 13, 14-25.	2.1	26
41	Identification of Novel Competing β2AR Phospho-Extracellular Signal Regulated Kinase 1/2 Signaling Pathways in Human Trabecular Meshwork Cells. Journal of Ocular Pharmacology and Therapeutics, 2012, 28, 17-25.	1.4	5
42	Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB Journal, 2012, 26, 4951-4965.	0.5	75
43	Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3. Journal of Biological Chemistry, 2012, 287, 41195-41209.	3.4	116
44	Discovery of a Potent and Selective GPR120 Agonist. Journal of Medicinal Chemistry, 2012, 55, 4511-4515.	6.4	145
45	Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonists: Mesylpropoxy Appendage Lowers Lipophilicity and Improves ADME Properties. Journal of Medicinal Chemistry, 2012, 55, 6624-6628.	6.4	50
46	Mechanism and Function of Drosophila capa GPCR: A Desiccation Stress-Responsive Receptor with Functional Homology to Human NeuromedinU Receptor. PLoS ONE, 2012, 7, e29897.	2.5	98
47	Experimental Challenges to Targeting Poorly Characterized GPCRs: Uncovering the Therapeutic Potential for Free Fatty Acid Receptors. Advances in Pharmacology, 2011, 62, 175-218.	2.0	47
48	Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric Modulator. Molecular Pharmacology, 2011, 80, 163-173.	2.3	78
49	Indirect Sympatholytic Actions at β-Adrenoceptors Account for the Ocular Hypotensive Actions of Cannabinoid Receptor Agonists. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 757-767.	2.5	32
50	Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists. Journal of Biological Chemistry, 2011, 286, 10628-10640.	3.4	101
51	Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochemical Journal, 2010, 432, 451-459.	3.7	91
52	Physical and functional interaction between CB ₁ cannabinoid receptors and β ₂ â€adrenoceptors. British Journal of Pharmacology, 2010, 160, 627-642.	5.4	73
53	Ligand- and Heterodimer-Directed Signaling of the CB ₁ Cannabinoid Receptor. Molecular Pharmacology, 2010, 77, 1-9.	2.3	98