Nengjie Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/985026/publications.pdf Version: 2024-02-01

NENCHE FENC

#	Article	IF	CITATIONS
1	Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-δ nanotubes as an efficient catalyst for soot combustion. Applied Catalysis B: Environmental, 2018, 236, 184-194.	20.2	123
2	Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 23060-23071.	8.0	105
3	K–Mn supported on three-dimensionally ordered macroporous La 0.8 Ce 0.2 FeO 3 catalysts for the catalytic combustion of soot. Applied Surface Science, 2017, 399, 114-122.	6.1	64
4	KNO ₃ supported on three-dimensionally ordered macroporous La _{0.8} Ce _{0.2} Mn _{1â^x} Fe _x O ₃ for soot removal. Catalysis Science and Technology, 2016, 6, 2930-2941.	4.1	58
5	Template-directed fabrication of MIL-101(Cr)/mesoporous silica composite: Layer-packed structure and enhanced performance for CO2 capture. Journal of Colloid and Interface Science, 2018, 513, 891-902.	9.4	54
6	Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites. Journal of Colloid and Interface Science, 2018, 521, 91-101.	9.4	53
7	In situ exsolution of Co/CoOx core-shell nanoparticles on double perovskite porous nanotubular webs: A synergistically active catalyst for soot efficient oxidation. Chemical Engineering Journal, 2019, 372, 752-764.	12.7	53
8	Facile synthesis of three-dimensionally ordered macroporous silicon-doped La _{0.8} K _{0.2} CoO ₃ perovskite catalysts for soot combustion. Catalysis Science and Technology, 2016, 6, 7718-7728.	4.1	40
9	Catalytic combustion of soot over Ce and Co substituted three-dimensionally ordered macroporous La _{1â^*x} Ce _x Fe _{1â^*y} Co _y O ₃ perovskite catalysts. RSC Advances, 2015, 5, 91609-91618.	3.6	39
10	Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes for an enhanced performance in diesel soot elimination. Journal of Hazardous Materials, 2020, 399, 123014.	12.4	37
11	Facile fabrication of trepang-like CeO2@MnO2 nanocomposite with high catalytic activity for soot removal. Applied Surface Science, 2020, 515, 146013.	6.1	34
12	Effect of calcination temperature on structural properties and catalytic soot combustion activity of MnOx/wire-mesh monoliths. Applied Surface Science, 2019, 467-468, 1088-1103.	6.1	32
13	Facile synthesis of three-dimensional ordered macroporous Sr _{1â^x} K _x TiO ₃ perovskites with enhanced catalytic activity for soot combustion. Catalysis Science and Technology, 2018, 8, 5462-5472.	4.1	30
14	Self-templating construction of mesopores on three-dimensionally ordered macroporous La _{0.5} Sr _{0.5} MnO ₃ perovskite with enhanced performance for soot combustion. Catalysis Science and Technology, 2019, 9, 1835-1846.	4.1	26
15	Promoting Diesel Soot Combustion Efficiency over Hierarchical Brushlike α-MnO ₂ and Co ₃ O ₄ Nanoarrays by Improving Reaction Sites. Industrial & Engineering Chemistry Research, 2019, 58, 13935-13949.	3.7	25
16	Accelerated synthesis of MnO ₂ nanocomposites by acid-free hydrothermal route for catalytic soot combustion. RSC Advances, 2016, 6, 50288-50296.	3.6	23
17	Surface acid etching for efficient anchoring of potassium on 3DOM La0.8Sr0.2MnO3 catalyst: An integration strategy for boosting soot and NOx simultaneous elimination. Journal of Hazardous Materials, 2021, 409, 124916.	12.4	23
18	Constructing a three-dimensionally ordered macroporous LaCrO _δ composite oxide via cerium substitution for enhanced soot abatement. Catalysis Science and Technology, 2017, 7, 2204-2212.	4.1	22

Nengjie Feng

#	Article	IF	CITATIONS
19	Interphase strengthening birnessite MnO2 coating on three-dimensional Ni foam for soot removal. Applied Catalysis A: General, 2018, 568, 157-167.	4.3	22
20	Construction of substrate-dependent 3D structured MnO2 catalysts for diesel soot elimination. Applied Surface Science, 2019, 484, 197-208.	6.1	18
21	Potassium promoted macro-mesoporous Co3O4-La0.88Sr0.12CoO3â^´Î´ nanotubes with large surface area: A high-performance catalyst for soot removal. Journal of Colloid and Interface Science, 2021, 582, 569-580.	9.4	15
22	Enhanced catalytic oxidation of soot over 3DOM LaMnO3 by adding Ag and CeO2: Improving the generation and delivery of active oxygen species. Applied Surface Science, 2022, 600, 154204.	6.1	15
23	Core–Shell-Structured Co–Z@TiO ₂ Catalysts Derived from ZIF-67 for Efficient Production of C ₅₊ Hydrocarbons in Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 7900-7908.	3.7	14
24	Construction of a hollow structure in La0.9K0.1CoO3â^´Î´ nanofibers via grain size control by Sr substitution with an enhanced catalytic performance for soot removal. Catalysis Science and Technology, 2019, 9, 4938-4951.	4.1	13
25	Promoting the generation of active oxygen species on 3DOM K/LaMnO3 interface by introducing CeO2 to boost the NOx-assisted soot combustion. Fuel, 2022, 317, 123405.	6.4	10
26	Palladium (II) Complex Supported on Magnetic Nanoparticles Modified with Phenanthroline: A Highly Active Reusable Nanocatalyst for the Synthesis of Benzoxazoles, Benzothiazoles and Cyanation of Aryl Halides. Catalysis Letters, 2023, 153, 460-476.	2.6	6
27	MnO _x dispersed on attapulgite derived Al-SBA-15: a promising catalyst for volatile organic compound combustion. RSC Advances, 2020, 10, 2472-2482.	3.6	5
28	Surface Modification of Cobaltâ€Manganese Mixed Oxide and Its Application for Lowâ€Temperature Propane Catalytic Combustion. ChemistrySelect, 2021, 6, 522-531.	1.5	4
29	Leaching inhibition of K species over 3DOM La0.8Sr0.2MnO3 perovskite through CuO embedding: Enhanced stability induced by phase transition for soot elimination. Applied Catalysis A: General, 2022, 637, 118599.	4.3	4