Joan B Broderick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The B12-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5â€2-deoxyadenosine and not 5â€2-deoxy-5â€2-(methylthio)adenosine. Journal of Inorganic Biochemistry, 2022, 227, 111662.	3.5	10
2	Mechanism of Radical <i>S</i>-Adenosyl- <scp> </scp> -methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5′-Deoxyadenosyl Radical. Journal of the American Chemical Society, 2022, 144, 5087-5098.	13.7	18
3	[FeFe]â€Hydrogenase: Defined Lysateâ€Free Maturation Reveals a Key Role for Lipoylâ€Hâ€Protein in DTMA Ligand Biosynthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
4	[FeFe]â€Hydrogenase: Defined Lysateâ€Free Maturation Reveals a Key Role for Lipoylâ€Hâ€Protein in DTMA Ligand Biosynthesis. Angewandte Chemie, 2022, 134, .	2.0	5
5	Titelbild: [FeFe]â€Hydrogenase: Defined Lysateâ€Free Maturation Reveals a Key Role for Lipoylâ€Hâ€Protein in DTMA Ligand Biosynthesis (Angew. Chem. 22/2022). Angewandte Chemie, 2022, 134, .	2.0	0
6	<i>S</i> â€Adenosylâ€ <scp>l</scp> â€ethionine is a Catalytically Competent Analog of <i>S</i> â€Adenosylâ€ <scp>l</scp> â€methionine (SAM) in the Radical SAM Enzyme HydG. Angewandte Chemie - International Edition, 2021, 60, 4666-4672.	13.8	19
7	<i>S</i> â€Adenosylâ€ <scp>l</scp> â€ethionine is a Catalytically Competent Analog of <i>S</i> â€Adenosylâ€ <scp>l</scp> â€methionine (SAM) in the Radical SAM Enzyme HydG. Angewandte Chemie, 2021, 133, 4716-4722.	2.0	3
8	HydG, the "dangler―iron, and catalytic production of free CO and CN ^{â^'} : implications for [FeFe]-hydrogenase maturation. Dalton Transactions, 2021, 50, 10405-10422.	3.3	11
9	Radical S-Adenosyl-l-Methionine Enzymes. , 2021, , 124-133.		0
10	Examining Pathways of Iron and Sulfur Acquisition, Trafficking, Deployment, and Storage in Mineral-Grown Methanogen Cells. Journal of Bacteriology, 2021, 203, e0014621.	2.2	13
11	Active-Site Controlled, Jahn–Teller Enabled Regioselectivity in Reductive S–C Bond Cleavage of <i>S</i> -Adenosylmethionine in Radical SAM Enzymes. Journal of the American Chemical Society, 2021, 143, 335-348.	13.7	15
12	[FeFe]-hydrogenase maturation: H-cluster assembly intermediates tracked by electron paramagnetic resonance, infrared, and X-ray absorption spectroscopy. Journal of Biological Inorganic Chemistry, 2020, 25, 777-788.	2.6	10
13	Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. Journal of the American Chemical Society, 2020, 142, 18652-18660.	13.7	10
14	The Elusive 5′-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies. Journal of the American Chemical Society, 2019, 141, 12139-12146.	13.7	68
15	Radical SAM enzymes: surprises along the path to understanding mechanism. Journal of Biological Inorganic Chemistry, 2019, 24, 769-776.	2.6	35
16	Radical S-adenosylmethionine maquette chemistry: Cx3Cx2C peptide coordinated redox active [4Fe–4S] clusters. Journal of Biological Inorganic Chemistry, 2019, 24, 793-807.	2.6	11
17	H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG. Journal of Biological Inorganic Chemistry, 2019, 24, 783-792.	2.6	15
18	Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an <i>S</i> -Adenosylmethionine Derived Methyl Radical. Journal of the American Chemical Society, 2019, 141, 16117-16124.	13.7	31

#	Article	IF	CITATIONS
19	Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in Topaquinone Biogenesis. Journal of the American Chemical Society, 2019, 141, 8877-8890.	13.7	8
20	Secondary structure analysis of peptides with relevance to iron–sulfur cluster nesting. Journal of Computational Chemistry, 2019, 40, 515-526.	3.3	8
21	Mechanism of Radical Initiation in the Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Superfamily. Accounts of Chemical Research, 2018, 51, 2611-2619.	15.6	78
22	Compositional and structural insights into the nature of the H-cluster precursor on HydF. Dalton Transactions, 2018, 47, 9521-9535.	3.3	16
23	Paradigm Shift for Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis. Journal of the American Chemical Society, 2018, 140, 8634-8638.	13.7	76
24	Mechanistic Studies of Radical SAM Enzymes: Pyruvate Formate-Lyase Activating Enzyme and Lysine 2,3-Aminomutase Case Studies. Methods in Enzymology, 2018, 606, 269-318.	1.0	17
25	Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Biochemistry, 2017, 56, 3234-3247.	2.5	12
26	Iron–Sulfur Cluster States of the Hydrogenase Maturase HydF. Biochemistry, 2017, 56, 4733-4734.	2.5	5
27	Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. Journal of the American Chemical Society, 2017, 139, 11803-11813.	13.7	28
28	17 Origin and evolution of Fe-S proteins and enzymes. , 2017, , 445-462.		2
29	A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF. Biochemistry, 2016, 55, 3514-3527.	2.5	18
30	Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond. Science, 2016, 352, 822-825.	12.6	113
31	Cutting Choline with Radical Scissors. Cell Chemical Biology, 2016, 23, 1173-1174.	5.2	2
32	Radical S-Adenosyl-l-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors. Journal of Biological Chemistry, 2015, 290, 3987-3994.	3.4	22
33	[FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster. Journal of the American Chemical Society, 2015, 137, 1809-1816.	13.7	119
34	Special issue on iron–sulfur proteins: Structure, function, biogenesis and diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1251-1252.	4.1	20
35	Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• "Free Radical―Is Never Free. Journal of the American Chemical Society, 2015, 137, 7111-7121.	13.7	59
36	[FeFe]-Hydrogenase Maturation: Insights into the Role HydE Plays in Dithiomethylamine Biosynthesis. Biochemistry, 2015, 54, 1807-1818.	2.5	57

#	Article	IF	CITATIONS
37	[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1350-1369.	4.1	400
38	Spectroscopic Investigation of Pyruvate Formate Lyase-activating Enzyme: A Look into EPR, ENDOR and Mossabuer Spectroscopy. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8, 1075-1097.	0.1	0
39	Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions. Archives of Biochemistry and Biophysics, 2014, 546, 64-71.	3.0	88
40	Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase. Journal of Biological Inorganic Chemistry, 2014, 19, 465-483.	2.6	9
41	Pyruvate Formate-lyase and Its Activation by Pyruvate Formate-lyase Activating Enzyme. Journal of Biological Chemistry, 2014, 289, 5723-5729.	3.4	50
42	Reversible H Atom Abstraction Catalyzed by the Radical <i>S</i> -Adenosylmethionine Enzyme HydG. Journal of the American Chemical Society, 2014, 136, 13086-13089.	13.7	38
43	[FeFe]-Hydrogenase Maturation. Biochemistry, 2014, 53, 4090-4104.	2.5	93
44	Solution phase dynamics of the DNA repair enzyme spore photoproduct lyase as probed by H/D exchange. FEBS Letters, 2014, 588, 3023-3029.	2.8	3
45	H-Cluster assembly during maturation of the [FeFe]-hydrogenase. Journal of Biological Inorganic Chemistry, 2014, 19, 747-757.	2.6	36
46	Radical <i>S</i> -Adenosylmethionine Enzymes. Chemical Reviews, 2014, 114, 4229-4317.	47.7	651
47	23. Origin and evolution of Fe-S proteins and enzymes. , 2014, , 619-636.		3
48	Flavodoxin cofactor binding induces structural changes that are required for protein–protein interactions with NADP+ oxidoreductase and pyruvate formate-lyase activating enzyme. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2512-2519.	2.3	16
49	Biochemical and Kinetic Characterization of Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme HydG. Biochemistry, 2013, 52, 8696-8707.	2.5	50
50	EPR and FTIR Analysis of the Mechanism of H ₂ Activation by [FeFe]-Hydrogenase HydA1 from Chlamydomonas reinhardtii. Journal of the American Chemical Society, 2013, 135, 6921-6929.	13.7	82
51	Biogenesis of the Hâ€cluster of the [FeFe]â€hydrogenase. FASEB Journal, 2013, 27, 98.2.	O.5	0
52	Viperin: a radical response to viral infection. Biomolecular Concepts, 2012, 3, 255-266.	2.2	43
53	Iron–sulfur cluster coordination in the [FeFe]â€hydrogenase H cluster biosynthetic factor HydF. FEBS Letters, 2012, 586, 3939-3943.	2.8	16
54	Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiology, 2012, 12, 21.	3.3	84

#	Article	IF	CITATIONS
55	Radical AdoMet enzymes in complex metal cluster biosynthesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1254-1263.	2.3	25
56	Emerging themes in radical SAM chemistry. Current Opinion in Structural Biology, 2012, 22, 701-710.	5.7	42
57	Radical SAM enzymes in methylation and methylthiolation. Metallomics, 2012, 4, 1149.	2.4	19
58	Emerging Paradigms for Complex Iron-Sulfur Cofactor Assembly and Insertion. Annual Review of Biochemistry, 2012, 81, 429-450.	11.1	90
59	S K-edge XAS and DFT Calculations on SAM Dependent Pyruvate Formate-Lyase Activating Enzyme: Nature of Interaction between the Fe ₄ S ₄ Cluster and SAM and its Role in Reactivity. Journal of the American Chemical Society, 2011, 133, 18656-18662.	13.7	45
60	Insights into [FeFe]-Hydrogenase Structure, Mechanism, and Maturation. Structure, 2011, 19, 1038-1052.	3.3	220
61	Cyanide and Carbon Monoxide Ligand Formation in Hydrogenase Biosynthesis. European Journal of Inorganic Chemistry, 2011, 2011, 935-947.	2.0	19
62	Cyanide and Carbon Monoxide Ligand Formation in Hydrogenase Biosynthesis. European Journal of Inorganic Chemistry, 2011, 2011, .	2.0	0
63	Biosynthesis of complex iron–sulfur enzymes. Current Opinion in Chemical Biology, 2011, 15, 319-327.	6.1	65
64	S-Adenosylmethionine and Iron–Sulfur Clusters in Biological Radical Reactions: The Radical SAM Superfamily. , 2010, , 625-661.		7
65	Complete stereospecific repair of a synthetic dinucleotide spore photoproduct by spore photoproduct lyase. Journal of Biological Inorganic Chemistry, 2010, 15, 943-955.	2.6	28
66	The antiviral protein viperin is a radical SAM enzyme. FEBS Letters, 2010, 584, 1263-1267.	2.8	103
67	[FeFe]â€Hydrogenase Cyanide Ligands Derived From <i>S</i> â€Adenosylmethionineâ€Dependent Cleavage of Tyrosine. Angewandte Chemie - International Edition, 2010, 49, 1687-1690.	13.8	144
68	Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature, 2010, 465, 248-251.	27.8	295
69	A radically different enzyme. Nature, 2010, 465, 877-878.	27.8	20
70	Identification and Characterization of a Novel Member of the Radical AdoMet Enzyme Superfamily and Implications for the Biosynthesis of the Hmd Hydrogenase Active Site Cofactor. Journal of Bacteriology, 2010, 192, 595-598.	2.2	45
71	Pyruvate Formate-lyase, Evidence for an Open Conformation Favored in the Presence of Its Activating Enzyme. Journal of Biological Chemistry, 2010, 285, 27224-27231.	3.4	38
72	Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10448-10453.	7.1	129

#	Article	IF	CITATIONS
73	[FeFe]-Hydrogenase Maturation: HydG-Catalyzed Synthesis of Carbon Monoxide. Journal of the American Chemical Society, 2010, 132, 9247-9249.	13.7	149
74	An Efficient Deprotection of <i>N</i> -Trimethylsilylethoxymethyl (SEM) Groups From Dinucleosides and Dinucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 132-143.	1.1	7
75	Control of radical chemistry in the AdoMet radical enzymes. Current Opinion in Chemical Biology, 2009, 13, 74-83.	6.1	62
76	Frontiers in enzymatic C–H-bond activation. Current Opinion in Chemical Biology, 2009, 13, 51-57.	6.1	27
77	Activation of HydA ^{ΔEFG} Requires a Preformed [4Fe-4S] Cluster. Biochemistry, 2009, 48, 6240-6248.	2.5	119
78	The Ironâ^'Sulfur Cluster of Pyruvate Formate-Lyase Activating Enzyme in Whole Cells: Cluster Interconversion and a Valence-Localized [4Fe-4S] ²⁺ State. Biochemistry, 2009, 48, 9234-9241.	2.5	47
79	Spore Photoproduct Lyase Catalyzes Specific Repair of the 5 <i>R</i> but Not the 5 <i>S</i> Spore Photoproduct. Journal of the American Chemical Society, 2009, 131, 2420-2421.	13.7	55
80	Chemoselective Deprotection of Triethylsilyl Ethers. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 1016-1029.	1.1	9
81	Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Transactions, 2009, , 4274.	3.3	66
82	HydF as a scaffold protein in [FeFe] hydrogenase H luster biosynthesis. FEBS Letters, 2008, 582, 2183-2187.	2.8	122
83	Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16137-16141.	7.1	170
84	Inactivation of E. coli pyruvate formate-lyase: Role of AdhE and small molecules. Archives of Biochemistry and Biophysics, 2007, 459, 1-9.	3.0	39
85	Assembling iron-sulfur clusters in the cytosol. Nature Chemical Biology, 2007, 3, 243-244.	8.0	6
86	In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation. Journal of Biological Inorganic Chemistry, 2007, 12, 443-447.	2.6	109
87	Characterization of an Active Spore Photoproduct Lyase, a DNA Repair Enzyme in the Radical S-Adenosylmethionine Superfamily. Journal of Biological Chemistry, 2006, 281, 25994-26003.	3.4	64
88	Spectroscopic Approaches to Elucidating Novel Ironâ^'Sulfur Chemistry in the "Radical-SAM―Protein Superfamily. Inorganic Chemistry, 2005, 44, 727-741.	4.0	108
89	Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation. Archives of Biochemistry and Biophysics, 2005, 433, 288-296.	3.0	44
90	Bioinorganic chemistry. Current Opinion in Chemical Biology, 2003, 7, 157-159.	6.1	1

#	Article	IF	CITATIONS
91	Structural studies of the interaction of <i>S</i> â€adenosylmethionine with the [4Feâ€4S] clusters in biotin synthase and pyruvate formateâ€lyase activating enzyme. Protein Science, 2003, 12, 1573-1577.	7.6	28
92	Paramagnetic Resonance in Mechanistic Studies of Fe-S/Radical Enzymes. ACS Symposium Series, 2003, , 113-127.	0.5	0
93	Coordination of Adenosylmethionine to a Unique Iron Site of the [4Fe-4S] of Pyruvate Formate-Lyase Activating Enzyme:  A Mössbauer Spectroscopic Study. Journal of the American Chemical Society, 2002, 124, 912-913.	13.7	139
94	Direct H Atom Abstraction from Spore Photoproduct C-6 Initiates DNA Repair in the Reaction Catalyzed by Spore Photoproduct Lyase:Â Evidence for a Reversibly Generated Adenosyl Radical Intermediate. Journal of the American Chemical Society, 2002, 124, 2860-2861.	13.7	121
95	An Anchoring Role for FeS Clusters:  Chelation of the Amino Acid Moiety of S-Adenosylmethionine to the Unique Iron Site of the [4Fe⒒4S] Cluster of Pyruvate Formate-Lyase Activating Enzyme. Journal of the American Chemical Society, 2002, 124, 11270-11271.	13.7	185
96	Electron-Nuclear Double Resonance Spectroscopic Evidence ThatS-Adenosylmethionine Binds in Contact with the Catalytically Active [4Feâ^'4S]+Cluster of Pyruvate Formate-Lyase Activating Enzyme. Journal of the American Chemical Society, 2002, 124, 3143-3151.	13.7	186
97	Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. Journal of Biological Inorganic Chemistry, 2001, 6, 209-226.	2.6	146
98	Pyruvate Formate-Lyase-Activating Enzyme: Strictly Anaerobic Isolation Yields Active Enzyme Containing a [3Fe–4S]+ Cluster. Biochemical and Biophysical Research Communications, 2000, 269, 451-456.	2.1	96
99	Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme:Â Mössbauer Characterization and Implications for Mechanism. Journal of the American Chemical Society, 2000, 122, 12497-12506.	13.7	86
100	Escherichia coli LipA Is a Lipoyl Synthase:  In Vitro Biosynthesis of Lipoylated Pyruvate Dehydrogenase Complex from Octanoyl-Acyl Carrier Protein. Biochemistry, 2000, 39, 15166-15178.	2.5	199
101	The [4Fe-4S]1+Cluster of Pyruvate Formate-Lyase Activating Enzyme Generates the Clycyl Radical on Pyruvate Formate-Lyase:Â EPR-Detected Single Turnover. Journal of the American Chemical Society, 2000, 122, 8331-8332.	13.7	106
102	Catechol dioxygenases. Essays in Biochemistry, 1999, 34, 173-189.	4.7	85
103	Pyruvate Formate-Lyase Activating Enzyme Is an Ironâ^'Sulfur Protein. Journal of the American Chemical Society, 1997, 119, 7396-7397.	13.7	118
104	Evidence for retention of biological activity of a non-heme iron enzyme adsorbed on a silver colloid: A surface-enhanced resonance Raman scattering study. Biochemistry, 1993, 32, 13771-13776.	2.5	39
105	Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry, 1991, 30, 7349-7358.	2.5	90