Natasha K Stout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9846488/publications.pdf

Version: 2024-02-01

257450 315739 3,011 39 24 38 h-index citations g-index papers 39 39 39 3320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Breast Biopsy Recommendations and Breast Cancers Diagnosed during the COVID-19 Pandemic. Radiology, 2022, 303, 287-294.	7.3	21
2	Population-Based Newborn Screening for Germline <i>TP53</i> Variants: Clinical Benefits, Cost-Effectiveness, and Value of Further Research. Journal of the National Cancer Institute, 2022, 114, 722-731.	6.3	4
3	Breast Cancer Screening Strategies for Women With <i>ATM, CHEK2</i> , and <i>PALB2</i> Pathogenic Variants. JAMA Oncology, 2022, 8, 587.	7.1	36
4	Impact of the COVID-19 Pandemic on Breast Cancer Mortality in the US: Estimates From Collaborative Simulation Modeling. Journal of the National Cancer Institute, 2021, 113, 1484-1494.	6.3	92
5	Universal newborn genetic screening for pediatric cancer predisposition syndromes: model-based insights. Genetics in Medicine, 2021, 23, 1366-1371.	2.4	16
6	Changes in Mammography Use by Women's Characteristics During the First 5 Months of the COVID-19 Pandemic. Journal of the National Cancer Institute, 2021, 113, 1161-1167.	6.3	69
7	Breast Cancer Screening Among Childhood Cancer Survivors Treated Without Chest Radiation: Clinical Benefits and Cost-Effectiveness. Journal of the National Cancer Institute, 2021, , .	6.3	9
8	Digital Mammography and Breast Tomosynthesis Performance in Women with a Personal History of Breast Cancer, 2007–2016. Radiology, 2021, 300, 290-300.	7.3	13
9	Trade-Offs Between Harms and Benefits of Different Breast Cancer Screening Intervals Among Low-Risk Women. Journal of the National Cancer Institute, 2021, 113, 1017-1026.	6.3	9
10	Long-Term Outcomes and Cost-Effectiveness of Breast Cancer Screening With Digital Breast Tomosynthesis in the United States. Journal of the National Cancer Institute, 2020, 112, 582-589.	6.3	48
11	Clinical Benefits, Harms, and Cost-Effectiveness of Breast Cancer Screening for Survivors of Childhood Cancer Treated With Chest Radiation. Annals of Internal Medicine, 2020, 173, 331-341.	3.9	24
12	Trends in screening breast magnetic resonance imaging use among US women, 2006 to 2016. Cancer, 2020, 126, 5293-5302.	4.1	15
13	Trends in Medical Imaging During Pregnancy in the United States and Ontario, Canada, 1996 to 2016. JAMA Network Open, 2019, 2, e197249.	5.9	30
14	Association of Digital Breast Tomosynthesis vs Digital Mammography With Cancer Detection and Recall Rates by Age and Breast Density. JAMA Oncology, 2019, 5, 635.	7.1	136
15	Breast Biopsy Intensity and Findings Following Breast Cancer Screening in Women With and Without a Personal History of Breast Cancer. JAMA Internal Medicine, 2018, 178, 458.	5.1	28
16	Distinguishing between CISNET model results versus CISNET models. Cancer, 2018, 124, 1083-1084.	4.1	0
17	Association of Screening and Treatment With Breast Cancer Mortality by Molecular Subtype in US Women, 2000-2012. JAMA - Journal of the American Medical Association, 2018, 319, 154.	7.4	209
18	Contribution of Breast Cancer to Overall Mortality for US Women. Medical Decision Making, 2018, 38, 24S-31S.	2.4	22

#	Article	IF	Citations
19	Introduction to the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Models. Medical Decision Making, 2018, 38, 3S-8S.	2.4	31
20	Comparing CISNET Breast Cancer Incidence and Mortality Predictions to Observed Clinical Trial Results of Mammography Screening from Ages 40 to 49. Medical Decision Making, 2018, 38, 140S-150S.	2.4	13
21	The University of Wisconsin Breast Cancer Epidemiology Simulation Model: An Update. Medical Decision Making, 2018, 38, 99S-111S.	2.4	43
22	Change in Survival in Metastatic Breast Cancer with Treatment Advances: Meta-Analysis and Systematic Review. JNCI Cancer Spectrum, 2018, 2, pky062.	2.9	199
23	Using Collaborative Simulation Modeling to Develop a Web-Based Tool to Support Policy-Level Decision Making About Breast Cancer Screening Initiation Age. MDM Policy and Practice, 2017, 2, 238146831771798.	0.9	8
24	Tailoring Breast Cancer Screening Intervals by Breast Density and Risk for Women Aged 50 Years or Older: Collaborative Modeling of Screening Outcomes. Annals of Internal Medicine, 2016, 165, 700.	3.9	90
25	Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies. Annals of Internal Medicine, 2016, 164, 215.	3.9	209
26	Disparities in the use of screening magnetic resonance imaging of the breast in community practice by race, ethnicity, and socioeconomic status. Cancer, 2016, 122, 611-617.	4.1	55
27	Cancer Models and Real-world Data: Better Together: Table 1 Journal of the National Cancer Institute, 2016, 108, djv316.	6.3	12
28	Cervical cancer screening and followâ€up in 4 geographically diverse <scp>US</scp> health care systems, 1998 through 2007. Cancer, 2015, 121, 2976-2983.	4.1	9
29	Comparative Effectiveness of Combined Digital Mammography and Tomosynthesis Screening for Women with Dense Breasts. Radiology, 2015, 274, 772-780.	7.3	98
30	The Contribution of Mammography Screening to Breast Cancer Incidence Trends in the United States: An Updated Age–Period–Cohort Model. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 905-912.	2.5	55
31	Benefits, Harms, and Cost-Effectiveness of Supplemental Ultrasonography Screening for Women With Dense Breasts. Annals of Internal Medicine, 2015, 162, 157-166.	3.9	175
32	Benefits and Harms of Mammography Screening After Age 74 Years: Model Estimates of Overdiagnosis. Journal of the National Cancer Institute, 2015, 107, djv103-djv103.	6.3	56
33	Effects of Screening and Systemic Adjuvant Therapy on ER-Specific US Breast Cancer Mortality. Journal of the National Cancer Institute, 2014, 106, .	6.3	120
34	Benefits, Harms, and Costs for Breast Cancer Screening After US Implementation of Digital Mammography. Journal of the National Cancer Institute, 2014, 106, dju092.	6.3	120
35	Effects of Mammography Screening Under Different Screening Schedules: Model Estimates of Potential Benefits and Harms. Annals of Internal Medicine, 2009, 151, 738.	3.9	509
36	Keeping the noise down: common random numbers for disease simulation modeling. Health Care Management Science, 2008, 11, 399-406.	2.6	28

Natasha K Stout

#	Article	IF	CITATIONS
37	Trade-offs in Cervical Cancer Prevention. Archives of Internal Medicine, 2008, 168, 1881.	3.8	52
38	Cost-Effectiveness of Digital Mammography Breast Cancer Screening. Annals of Internal Medicine, 2008, 148, 1.	3.9	160
39	Retrospective Cost-effectiveness Analysis of Screening Mammography. Journal of the National Cancer Institute, 2006, 98, 774-782.	6.3	188