
Eszter Voroshazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9838457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells, 2011, 95, 1253-1267.	6.2	812
2	Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration. Polymers, 2016, 8, 1.	4.5	285
3	Solution-Processed MoO ₃ Thin Films As a Hole-Injection Layer for Organic Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 3244-3247.	8.0	280
4	Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Organic Electronics, 2011, 12, 736-744.	2.6	255
5	Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cells. Solar Energy Materials and Solar Cells, 2011, 95, 1303-1307.	6.2	147
6	Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration. Energy and Environmental Science, 2012, 5, 6521.	30.8	134
7	An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules. Solar Energy Materials and Solar Cells, 2011, 95, 1398-1416.	6.2	132
8	Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films. Advanced Functional Materials, 2014, 24, 1325-1332.	14.9	110
9	The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Advances, 2012, 2, 882-893.	3.6	108
10	Towards a circular supply chain for PV modules: Review of today's challenges in PV recycling, refurbishment and reâ€certification. Progress in Photovoltaics: Research and Applications, 2020, 28, 454-464.	8.1	77
11	Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 17345.	6.7	75
12	Adhesion properties of inverted polymer solarcells: Processing and film structure parameters. Organic Electronics, 2013, 14, 1262-1270.	2.6	66
13	Physics of potential-induced degradation in bifacial p-PERC solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 109950.	6.2	51
14	Efficient truxenone-based acceptors for organic photovoltaics. Journal of Materials Chemistry A, 2013, 1, 73-76.	10.3	48
15	Lightâ€Induced Degradation of Polymer:Fullerene Photovoltaic Devices: An Intrinsic or Materialâ€Dependent Failure Mechanism?. Advanced Energy Materials, 2014, 4, 1400848.	19.5	40
16	On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaboration. Physical Chemistry Chemical Physics, 2012, 14, 11824.	2.8	38
17	Nafion-Modified MoO _{<i>x</i>} as Effective Room-Temperature Hole Injection Layer for Stable, High-Performance Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 3581-3589.	8.0	38
18	TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration. Physical Chemistry Chemical Physics, 2012, 14, 11780.	2.8	32

ESZTER VOROSHAZI

#	Article	IF	CITATIONS
19	Electron-deficient truxenone derivatives and their use in organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 12348-12354.	10.3	32
20	Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400135.	3.7	28
21	Root-Cause Failure Analysis of Photocurrent Loss in Polythiophene:Fullerene-Based Inverted Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 618-623.	8.0	28
22	Overview and Perspectives for Vehicle-Integrated Photovoltaics. Applied Sciences (Switzerland), 2021, 11, 11598.	2.5	25
23	Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 443-449.	6.2	24
24	Thermal cycling effect on mechanical integrity of inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 418-423.	6.2	23
25	The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells. , 2012, , .		15
26	Round robin performance testing of organic photovoltaic devices. Renewable Energy, 2014, 63, 376-387.	8.9	15
27	Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells. Solar Energy Materials and Solar Cells, 2017, 170, 239-245.	6.2	14
28	Photovoltaic energy yield modelling under desert and moderate climates: What-if exploration of different cell technologies. Solar Energy, 2018, 173, 728-739.	6.1	14
29	Why and how to adapt PID testing for bifacial PV modules?. Progress in Photovoltaics: Research and Applications, 2020, 28, 1045-1053.	8.1	13
30	Fundamental aspects of Ar _n ⁺ SIMS profiling of common organic semiconductors. Surface and Interface Analysis, 2014, 46, 54-57.	1.8	12
31	Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 9798-9805.	8.0	12
32	Role of Electron- and Hole-Collecting Buffer Layers on the Stability of Inverted Polymer: Fullerene Photovoltaic Devices. IEEE Journal of Photovoltaics, 2014, 4, 265-270.	2.5	11
33	Towards a successful reâ€use of decommissioned photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2022, 30, 910-920.	8.1	11
34	Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials. Solar Energy Materials and Solar Cells, 2015, 133, 99-104.	6.2	10
35	A woven fabric for interconnecting backâ€contact solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 569-582.	8.1	8
36	Understanding Physico-Chemical Aspects in the Depth Profiling of Polymer:Fullerene Layers. Journal of Physical Chemistry C, 2016, 120, 28074-28082.	3.1	6

ESZTER VOROSHAZI

#	Article	IF	CITATIONS
37	Insights into the nanoscale lateral and vertical phase separation in organic bulk heterojunctions via scanning probe microscopy. Nanoscale, 2016, 8, 3629-3637.	5.6	6
38	Characterization of organic solar cell materials by G‣IMS. Surface and Interface Analysis, 2013, 45, 430-433.	1.8	4
39	Combined characterization techniques to understand the stability of a variety of organic photovoltaic devices: the ISOS-3 inter-laboratory collaboration. , 2012, , .		3
40	Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration. , 2015, , .		3
41	Stability and degradation of organic photovoltaics fabricated, aged, and characterized by the ISOS 3 inter-laboratory collaboration. , 2012, , .		2
42	Organic photovoltaic cell relying on energy transfer with over 20% efficiency in indoor lighting. , 2014, , .		2
43	Multi-wire interconnection technologies weaving the way for back contact and bifacial PV modules. , 2016, , .		2
44	Sensitivity analysis of the effect of forced convection on photovoltaic module temperature and energy yield. , 2019, , .		2
45	Crystallization kinetics and morphology relations on thermally annealed bulk heterojunction solar cell blends studied by rapid heat cool calorimetry (RHC). , 2012, , .		1
46	Role of electron and hole collecting buffer layers on the stability of inverted polymer: Fullerene photovoltaic devices. , 2013, , .		1
47	Multi-wire interconnection technologies weaving the way for back contact and bifacial PV modules. , 2017, , .		1
48	Woven multi-ribbon interconnection for back-contact cells: Extending the functionality of the encapsulant. AIP Conference Proceedings, 2019, , .	0.4	1
49	Gâ€&IMS analysis of organic solar cell materials. Surface and Interface Analysis, 2014, 46, 96-99.	1.8	0
50	Light stability of ITO-free semi-transparent and opaque organic photovoltaic devices. , 2015, , .		0
51	Optimization Methodology for Reconfigurable PV Modules. , 2018, , .		0
52	Mechanical and chemical adhesion at the encapsulant interfaces in laminated photovoltaic modules. , 2018, , .		0