Durland Fish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9836744/publications.pdf Version: 2024-02-01

DUDIAND FISH

#	Article	IF	CITATIONS
1	Seasonal Dynamics of Mosquito-Borne Viruses in the Southwestern Florida Everglades, 2016, 2017. American Journal of Tropical Medicine and Hygiene, 2022, 106, 610-622.	1.4	5
2	Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS ONE, 2021, 16, e0259419.	2.5	9
3	Borrelia miyamotoi: An Emerging Tick-Borne Pathogen. American Journal of Medicine, 2019, 132, 136-137.	1.5	19
4	Communityâ€acquired and transfusionâ€ŧransmitted babesiosis are increasing: why and what to do?. Transfusion, 2018, 58, 617-619.	1.6	4
5	Response to "Transfusionâ€transmitted and communityâ€acquired babesiosis in New York, 2004 to 2015: a response to why and what to doâ€. Transfusion, 2018, 58, 1818-1819.	1.6	0
6	Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. American Journal of Tropical Medicine and Hygiene, 2018, 98, 410-419.	1.4	45
7	Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology, 2017, 504, 152-167.	2.4	68
8	Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160117.	4.0	173
9	Assessment of synthetic floral-based attractants and sugar baits to capture male and female Aedes aegypti (Diptera: Culicidae). Parasites and Vectors, 2017, 10, 32.	2.5	26
10	Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasites and Vectors, 2017, 10, 64.	2.5	21
11	<i>Almendravirus</i> : A Proposed New Genus of Rhabdoviruses Isolated from Mosquitoes in Tropical Regions of the Americas. American Journal of Tropical Medicine and Hygiene, 2017, 96, 100-109.	1.4	27
12	A Cost-Effectiveness Tool for Informing Policies on Zika Virus Control. PLoS Neglected Tropical Diseases, 2016, 10, e0004743.	3.0	56
13	Evaluating the effectiveness of localized control strategies to curtail chikungunya. Scientific Reports, 2016, 6, 23997.	3.3	20
14	Response to Esteve-Gassent et al.: flaB sequences obtained from Texas PCR products are identical to the positive control strain Borrelia burgdorferi B31. Parasites and Vectors, 2015, 8, 310.	2.5	7
15	Association between body size and reservoir competence of mammals bearing Borrelia burgdorferi at an endemic site in the northeastern United States. Parasites and Vectors, 2015, 8, 299.	2.5	30
16	Spatial and Temporal Clustering of Chikungunya Virus Transmission in Dominica. PLoS Neglected Tropical Diseases, 2015, 9, e0003977.	3.0	27
17	Long-term in vitro cultivation of Borrelia miyamotoi. Ticks and Tick-borne Diseases, 2015, 6, 181-184.	2.7	35
18	<i>Borrelia miyamotoi</i> sensu lato Seroreactivity and Seroprevalence in the Northeastern United States. Emerging Infectious Diseases, 2014, 20, 1183-1190.	4.3	109

Durland Fish

#	Article	IF	CITATIONS
19	Monitoring Human Babesiosis Emergence through Vector Surveillance New England, USA. Emerging Infectious Diseases, 2014, 20, 225-231.	4.3	64
20	Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete. Cell Host and Microbe, 2014, 15, 58-71.	11.0	299
21	Borrelia burgdorferi Promotes the Establishment of Babesia microti in the Northeastern United States. PLoS ONE, 2014, 9, e115494.	2.5	91
22	Quantitative PCR for Detection of <i>Babesia microti</i> in <i>lxodes scapularis</i> Ticks and in Human Blood. Vector-Borne and Zoonotic Diseases, 2013, 13, 784-790.	1.5	40
23	Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks and Tick-borne Diseases, 2013, 4, 46-51.	2.7	216
24	Human <i>Borrelia miyamotoi</i> Infection in the United States. New England Journal of Medicine, 2013, 368, 291-293.	27.0	222
25	Identification of Borrelia burgdorferi ospC Genotypes in Host Tissue and Feeding Ticks by Terminal Restriction Fragment Length Polymorphisms. Applied and Environmental Microbiology, 2013, 79, 958-964.	3.1	8
26	Human Risk of Infection with Borrelia burgdorferi, the Lyme Disease Agent, in Eastern United States. American Journal of Tropical Medicine and Hygiene, 2012, 86, 320-327.	1.4	233
27	Predicted Outcomes of Vaccinating Wildlife to Reduce Human Risk of Lyme Disease. Vector-Borne and Zoonotic Diseases, 2012, 12, 544-551.	1.5	19
28	Geographic Variation in the Relationship between Human Lyme Disease Incidence and Density of Infected Host-Seeking Ixodes scapularis Nymphs in the Eastern United States. American Journal of Tropical Medicine and Hygiene, 2012, 86, 1062-1071.	1.4	141
29	Humans Infected with Relapsing Fever Spirochete <i>Borrelia miyamotoi</i> , Russia. Emerging Infectious Diseases, 2011, 17, 1816-1823.	4.3	371
30	Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infection, Genetics and Evolution, 2011, 11, 1545-1563.	2.3	210
31	<i>Anaplasma phagocytophilum</i> induces actin phosphorylation to selectively regulate gene transcription in <i>Ixodes scapularis</i> ticks. Journal of Experimental Medicine, 2011, 208, 1737-1737.	8.5	1
32	Field and climateâ€based model for predicting the density of hostâ€seeking nymphal <i>Ixodes scapularis</i> , an important vector of tickâ€borne disease agents in the eastern United States. Global Ecology and Biogeography, 2010, 19, 504-514.	5.8	116
33	<i>Anaplasma phagocytophilum</i> induces actin phosphorylation to selectively regulate gene transcription in <i>Ixodes scapularis</i> ticks. Journal of Experimental Medicine, 2010, 207, 1727-1743.	8.5	99
34	Ecology: A Prerequisite for Malaria Elimination and Eradication. PLoS Medicine, 2010, 7, e1000303.	8.4	289
35	Klaus Kurtenbach – a tribute to his life. Ticks and Tick-borne Diseases, 2010, 1, 69-72.	2.7	0
36	Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii. Ticks and Tick-borne Diseases, 2010, 1, 151-158.	2.7	103

#	Article	lF	CITATIONS
37	Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. Journal of Clinical Investigation, 2010, 120, 3179-3190.	8.2	193
38	Evaluation of the United States Department of Agriculture Northeast Area-Wide Tick Control Project by Meta-Analysis. Vector-Borne and Zoonotic Diseases, 2009, 9, 423-430.	1.5	47
39	The United States Department of Agriculture's Northeast Area-Wide Tick Control Project: Summary and Conclusions. Vector-Borne and Zoonotic Diseases, 2009, 9, 439-448.	1.5	53
40	Acaricidal Treatment of White-Tailed Deer to Control <i>Ixodes scapularis</i> (Acari: Ixodidae) in a New York Lyme Disease-Endemic Community. Vector-Borne and Zoonotic Diseases, 2009, 9, 381-387.	1.5	24
41	Langerhans Cell Deficiency Impairs <i>Ixodes scapularis</i> Suppression of Th1 Responses in Mice. Infection and Immunity, 2009, 77, 1881-1887.	2.2	21
42	Community-Based Prevention of Lyme Disease and Other Tick-Borne Diseases Through Topical Application of Acaricide to White-Tailed Deer: Background and Rationale. Vector-Borne and Zoonotic Diseases, 2009, 9, 357-364.	1.5	31
43	The United States Department of Agriculture Northeast Area-Wide Tick Control Project: History and Protocol. Vector-Borne and Zoonotic Diseases, 2009, 9, 365-370.	1.5	24
44	Climate and Tick Seasonality Are Predictors of <i>Borrelia burgdorferi</i> Genotype Distribution. Applied and Environmental Microbiology, 2009, 75, 2476-2483.	3.1	148
45	Phylogeography of <i>Borrelia burgdorferi</i> in the eastern United States reflects multiple independent Lyme disease emergence events. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15013-15018.	7.1	148
46	Effects of Tick Control by Acaricide Self-Treatment of White-Tailed Deer on Host-Seeking Tick Infection Prevalence and Entomologic Risk for <i>Ixodes scapularis</i> -Borne Pathogens. Vector-Borne and Zoonotic Diseases, 2009, 9, 431-438.	1.5	47
47	Niche Partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the Same Tick Vector and Mammalian Reservoir Species. American Journal of Tropical Medicine and Hygiene, 2009, 81, 1120-1131.	1.4	271
48	Comparison of three satellite sensors at three spatial scales to predict larval mosquito presence in Connecticut wetlands. Remote Sensing of Environment, 2008, 112, 2301-2308.	11.0	25
49	A Bayesian hierarchical model for the estimation of two incomplete surveillance data sets. Statistics in Medicine, 2008, 27, 3269-3285.	1.6	4
50	Effectiveness of Mosquito Traps in Measuring Species Abundance and Composition. Journal of Medical Entomology, 2008, 45, 517-521.	1.8	41
51	Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus and I. lividus ticks collected from wild birds in the Republic of Moldova. International Journal of Medical Microbiology, 2008, 298, 149-153.	3.6	22
52	MLST of housekeeping genes captures geographic population structure and suggests a European origin of <i>Borrelia burgdorferi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8730-8735.	7.1	280
53	Fitness Variation of <i>Borrelia burgdorferi</i> Sensu Stricto Strains in Mice. Applied and Environmental Microbiology, 2008, 74, 153-157.	3.1	83
54	Charley Harper, Renowned Wildlife Artist and Journal Cover Artist for Vector-Borne and Zoonotic Diseases. Vector-Borne and Zoonotic Diseases, 2008, 8, 301-302.	1.5	1

#	Article	IF	CITATIONS
55	Remotely-Sensed Vegetation Indices Identify Mosquito Clusters of West Nile Virus Vectors in an Urban Landscape in the Northeastern United States. Vector-Borne and Zoonotic Diseases, 2008, 8, 197-206.	1.5	76
56	Ecologic Factors Associated with West Nile Virus Transmission, Northeastern United States. Emerging Infectious Diseases, 2008, 14, 1539-1545.	4.3	106
57	Outer Surface Protein B Is Critical for Borrelia burgdorferi Adherence and Survival within Ixodes Ticks. PLoS Pathogens, 2007, 3, e33.	4.7	78
58	Role of Outer Surface Protein D in the <i>Borrelia burgdorferi</i> Life Cycle. Infection and Immunity, 2007, 75, 4237-4244.	2.2	36
59	Epidemic Spread of Lyme Borreliosis, Northeastern United States. Emerging Infectious Diseases, 2006, 12, 604-611.	4.3	133
60	Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology, 2006, 4, 660-669.	28.6	402
61	An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. Journal of Experimental Medicine, 2006, 203, 1507-1517.	8.5	104
62	The Clinical Assessment, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2006, 43, 1089-1134.	5.8	1,795
63	MyD88 Deficiency Enhances Acquisition and Transmission of Borrelia burgdorferi by Ixodes scapularis Ticks. Infection and Immunity, 2006, 74, 2154-2160.	2.2	18
64	The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature, 2005, 436, 573-577.	27.8	441
65	Effect of Climate Change on Lyme Disease Risk in North America. EcoHealth, 2005, 2, 38-46.	2.0	212
66	Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia, 2005, 146, 469-475.	2.0	205
67	What about the ducks? An alternative vaccination strategy. Yale Journal of Biology and Medicine, 2005, 78, 301-8.	0.2	1
68	Enhancing West Nile Virus Surveillance, United States. Emerging Infectious Diseases, 2004, 10, 1129-1133.	4.3	53
69	Typing of <i>Borrelia</i> Relapsing Fever Group Strains. Emerging Infectious Diseases, 2004, 10, 1661-1664.	4.3	109
70	An ecological approach to preventing human infection: Vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18159-18164.	7.1	262
71	Interaction and Transmission of Two Borrelia burgdorferi Sensu Stricto Strains in a Tick-Rodent Maintenance System. Applied and Environmental Microbiology, 2004, 70, 6783-6788.	3.1	83
72	Borrelia burgdorferiInfection in a Natural Population ofPeromyscus LeucopusMice: A Longitudinal Study in an Area Where Lyme Borreliosis Is Highly Endemic. Journal of Infectious Diseases, 2004, 189, 1515-1523.	4.0	104

#	Article	IF	CITATIONS
73	A Dispersal Model for the Range Expansion of Blacklegged Tick (Acari: Ixodidae). Journal of Medical Entomology, 2004, 41, 842-852.	1.8	103
74	Genetic Variability within Borrelia burgdorferi Sensu Lato Genospecies Established by PCR-Single-Strand Conformation Polymorphism Analysis of the rrfA-rrlB Intergenic Spacer in Ixodes ricinus Ticks from the Czech Republic. Applied and Environmental Microbiology, 2003, 69, 509-516.	3.1	106
75	Real-Time PCR for Simultaneous Detection and Quantification of Borrelia burgdorferi in Field-Collected Ixodes scapularis Ticks from the Northeastern United States. Applied and Environmental Microbiology, 2003, 69, 4561-4565.	3.1	52
76	A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States Environmental Health Perspectives, 2003, 111, 1152-1157.	6.0	212
77	Comparison of the Reservoir Competence of Medium-Sized Mammals andPeromyscus leucopusforAnaplasma phagocytophilumin Connecticut. Vector-Borne and Zoonotic Diseases, 2002, 2, 125-136.	1.5	117
78	Farewell Editorial. Vector-Borne and Zoonotic Diseases, 2002, 2, 123-123.	1.5	0
79	Spatial Analysis of West Nile Virus: Rapid Risk Assessment of an Introduced Vector-Borne Zoonosis. Vector-Borne and Zoonotic Diseases, 2002, 2, 157-164.	1.5	129
80	Examination of the Borrelia burgdorferi Transcriptome in Ixodes scapularis during Feeding. Journal of Bacteriology, 2002, 184, 3122-3125.	2.2	68
81	A Relapsing Fever Group Spirochete Transmitted bylxodes scapularisTicks. Vector-Borne and Zoonotic Diseases, 2001, 1, 21-34.	1.5	299
82	Vaccines Versus Vectors. Vector-Borne and Zoonotic Diseases, 2001, 1, 249-249.	1.5	1
83	Yes, Yet Another Journal. Vector-Borne and Zoonotic Diseases, 2001, 1, 1-1.	1.5	0
84	Prophylaxis with Single-Dose Doxycycline for the Prevention of Lyme Disease after an <i>Ixodes scapularis</i> Tick Bite. New England Journal of Medicine, 2001, 345, 79-84.	27.0	456
85	OspA Immunization Decreases Transmission ofBorrelia burgdorferiSpirochetes from InfectedPeromyscus leucopusMice to Larvallxodes scapularisTicks. Vector-Borne and Zoonotic Diseases, 2001, 1, 65-74.	1.5	34
86	Bioterrorism. Vector-Borne and Zoonotic Diseases, 2001, 1, 179-179.	1.5	1
87	Interference Between the Agents of Lyme Disease and Human Granulocytic Ehrlichiosis in a Natural Reservoir Host. Vector-Borne and Zoonotic Diseases, 2001, 1, 139-148.	1.5	32
88	Coinfection with <i> Borrelia burgdorferi</i> and the agent of human granulocytic ehrlichiosis suppresses ILâ€⊋ and IFNγ production and promotes an ILâ€4 response in C3H/HeJ mice. Parasite Immunology, 2000, 22, 581-588.	1.5	59
89	Acquisition of Coinfection and Simultaneous Transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis Ticks. Infection and Immunity, 2000, 68, 2183-2186.	2.2	99
90	Immunity Reduces Reservoir Host Competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infection and Immunity, 2000, 68, 1514-1518.	2.2	49

#	Article	IF	CITATIONS
91	Francisella-like Endosymbionts of Ticks. Journal of Invertebrate Pathology, 2000, 76, 301-303.	3.2	69
92	Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. Journal of Clinical Investigation, 2000, 106, 561-569.	8.2	215
93	Estimating Population Size and Drag Sampling Efficiency for the Blacklegged Tick (Acari: Ixodidae). Journal of Medical Entomology, 2000, 37, 357-363.	1.8	56
94	Disparity in the Natural Cycles ofBorrelia burgdorferiand the Agent of Human Granulocytic Ehrlichiosis. Emerging Infectious Diseases, 1999, 5, 204-208.	4.3	47
95	Comparative Vector Competence ofDermacentor variabilisandIxodes scapularis(Acari: Ixodidae) for the Agent of Human Granulocytic Ehrlichiosis. Journal of Medical Entomology, 1999, 36, 182-185.	1.8	23
96	Landscape features associated with lyme disease risk in a suburban residential environment. Landscape Ecology, 1998, 13, 27-36.	4.2	71
97	Acquisition and Transmission of the Agent of Human Granulocytic Ehrlichiosis by <i>Ixodes scapularis</i> Ticks. Journal of Clinical Microbiology, 1998, 36, 3574-3578.	3.9	121
98	Transmission of the Agent of Human Granulocytic Ehrlichiosis by Host-Seeking Ixodus scapularis (Acari: Ixodidae) in Southern New York State. Journal of Medical Entomology, 1997, 34, 379-382.	1.8	79
99	Prevalence of the Rickettsial Agent of Human Granulocytic Ehrlichiosis in Ticks from a Hyperendemic Focus of Lyme Disease. New England Journal of Medicine, 1997, 337, 49-50.	27.0	97
100	Feeding Density Influences Acquisition of Borrelia burgdorferi in Larval Ixodes scapularis (Acari:) Tj ETQq0 0 0 rgB	T /Overloc 1.8	k 10 Tf 50 38
101	Inhibition of Efficient Polymerase Chain Reaction Amplification of Borrelia burgdorferi DNA in Blood-Fed Ticks. American Journal of Tropical Medicine and Hygiene, 1997, 56, 339-342.	1.4	82
102	Landscape Characterization of Peridomestic Risk for Lyme Disease Using Satellite Imagery. American Journal of Tropical Medicine and Hygiene, 1997, 57, 687-692.	1.4	145
103	Timing of Ixodes scapularis (Acari: Ixodidae) Oviposition and arval Activity in Southern New York. Journal of Medical Entomology, 1996, 33, 140-147.	1.8	44
104	Duration of Tick Bites in a Lyme Disease-endemic Area. American Journal of Epidemiology, 1996, 143, 187-192.	3.4	139
105	Increase in Abundance of Immature Ixodes scapularis (Acari: Ixodidae) in an Emergent Lyme Disease Endemic Area. Journal of Medical Entomology, 1995, 32, 522-526.	1.8	38
106	Effect of Deer Exclusion on the Abundance of Immature Ixodes scapularis (Acari: Ixodidae) Parasitizing Small and Medium-Sized Mammals. Journal of Medical Entomology, 1995, 32, 5-11.	1.8	60
107	Canine Exposure to Borrelia burgdorferi and Prevalence of Ixodes dammini (Acari: Ixodidae) on Deer as a Measure of Lyme Disease Risk in the Northeastern United States. Journal of Medical Entomology, 1993, 30, 171-178.	1.8	43

	Relative Importance of Bird Species as Hosts for Immature Ixodes dammini (Acari: Ixodidae) in a		
108	Suburban Residential Landscape of Southern New York State. Journal of Medical Entomology, 1993, 30,	1.8	69
	740-747.		

#	Article	IF	CITATIONS
109	Reduced Abundance of Ixodes scapularis (Acari: Ixodidae) and Lyme Disease Risk by Deer Exclusion. Journal of Medical Entomology, 1993, 30, 1043-1049.	1.8	94
110	Reduction of Nymphal Ixodes dammini (Acari: Ixodidae) in a Residential Suburban Landscape by Area Application of Insecticides. Journal of Medical Entomology, 1993, 30, 107-113.	1.8	103
111	Entomologic and Demographic Correlates of Anti-Tick Saliva Antibody in a Prospective Study of Tick Bite Subjects in Westchester County, New York. American Journal of Tropical Medicine and Hygiene, 1993, 48, 50-57.	1.4	29
112	A comparison of methods for sampling the deer tick,Ixodes dammini, in a Lyme disease endemic area. Experimental and Applied Acarology, 1992, 14, 165-173.	1.6	149
113	Evaluation of Host-Targeted Acaricide for Reducing Risk of Lyme Disease in Southern New York State. Journal of Medical Entomology, 1991, 28, 537-543.	1.8	68
114	Landscape Ecology of Lyme Disease in a Residential Area of Westchester County, New York. American Journal of Epidemiology, 1991, 133, 1105-1113.	3.4	233
115	Horizontal Movement of Adult Ixodes dammini (Acari: Ixodidae) Attracted to Co2-Baited Traps. Journal of Medical Entomology, 1991, 28, 726-729.	1.8	99
116	Spatial Distribution and Dispersal of Unfed Larval Ixodes dammini (Acari: Ixodidae) in Southern New York. Environmental Entomology, 1990, 19, 1029-1033.	1.4	63
117	THE ROLE OF MEDIUM-SIZED MAMMALS AS RESERVOIRS OF BORRELIA BURGDORFERI IN SOUTHERN NEW YORK. Journal of Wildlife Diseases, 1990, 26, 339-345.	0.8	66
118	Host Associations of Ticks (Acari: Ixodidae) Parasitizing Medium-Sized Mammals in a Lyme Disease Endemic Area of Southern New York. Journal of Medical Entomology, 1989, 26, 200-209.	1.8	80
119	Seasonal Activity and Survival of Adult Ixodes dammini (Acari: Ixodidae) in Southern New York State. Journal of Medical Entomology, 1989, 26, 610-614.	1.8	51
120	TICKS PARASITIZING HUMANS IN A LYME DISEASE ENDEMIC AREA OF SOUTHERN NEW YORK STATE. American Journal of Epidemiology, 1988, 128, 1146-1152.	3.4	99
121	PREVALENCE OF IXODES DAMMINI NEAR THE HOMES OF LYME DISEASE PATIENTS IN WESTCHESTER COUNTY, NEW YORK. American Journal of Epidemiology, 1988, 127, 826-830.	3.4	162
122	SPIROCHETES IN TICKS AND ANTIBODIES TO BORRELIA BURGDORFERI IN WHITE-TAILED DEER FROM CONNECTICUT, NEW YORK STATE, AND NORTH CAROLINA. Journal of Wildlife Diseases, 1986, 22, 178-188.	0.8	162
123	Leaf Litter and Larval Mosquito Dynamics in Tree-Hole Ecosystems. Ecology, 1982, 63, 283-288.	3.2	197
124	Estimating a feasible serial interval range for Zika fever. Bulletin of the World Health Organization, 0, , .	3.3	13